Use experiment-specific config in mujoco_sac_hl, adding auto-alpha

This commit is contained in:
Dominik Jain 2023-09-20 15:13:05 +02:00
parent adc324038a
commit d26b8cb40c
4 changed files with 92 additions and 8 deletions

View File

@ -7,7 +7,7 @@ from collections.abc import Sequence
from jsonargparse import CLI
from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.highlevel.agent import SACAgentFactory, SACConfig
from tianshou.highlevel.agent import DefaultAutoAlphaFactory, SACAgentFactory, SACConfig
from tianshou.highlevel.experiment import (
RLExperiment,
RLExperimentConfig,
@ -23,17 +23,56 @@ from tianshou.highlevel.optim import AdamOptimizerFactory
def main(
experiment_config: RLExperimentConfig,
sampling_config: RLSamplingConfig,
sac_config: SACConfig,
task: str = "Ant-v3",
buffer_size: int = 1000000,
hidden_sizes: Sequence[int] = (256, 256),
task: str = "Ant-v4",
actor_lr: float = 1e-3,
critic_lr: float = 1e-3,
gamma: float = 0.99,
tau: float = 0.005,
alpha: float = 0.2,
auto_alpha: bool = False,
alpha_lr: float = 3e-4,
start_timesteps: int = 10000,
epoch: int = 200,
step_per_epoch: int = 5000,
step_per_collect: int = 1,
update_per_step: int = 1,
n_step: int = 1,
batch_size: int = 256,
training_num: int = 1,
test_num: int = 10,
):
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
log_name = os.path.join(task, "sac", str(experiment_config.seed), now)
logger_factory = DefaultLoggerFactory()
sampling_config = RLSamplingConfig(
num_epochs=epoch,
step_per_epoch=step_per_epoch,
num_train_envs=training_num,
num_test_envs=test_num,
buffer_size=buffer_size,
batch_size=batch_size,
step_per_collect=step_per_collect,
update_per_step=update_per_step,
start_timesteps=start_timesteps,
start_timesteps_random=True,
)
env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config)
if auto_alpha:
alpha = DefaultAutoAlphaFactory(lr=alpha_lr)
sac_config = SACConfig(
tau=tau,
gamma=gamma,
alpha=alpha,
estimation_step=n_step,
actor_lr=actor_lr,
critic1_lr=critic_lr,
critic2_lr=critic_lr,
)
actor_factory = ContinuousActorProbFactory(hidden_sizes, conditioned_sigma=True)
critic_factory = ContinuousNetCriticFactory(hidden_sizes)
optim_factory = AdamOptimizerFactory()

View File

@ -4,6 +4,7 @@ from collections.abc import Callable
from dataclasses import dataclass
from typing import Literal
import numpy as np
import torch
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
@ -34,6 +35,8 @@ class AgentFactory(ABC):
buffer = ReplayBuffer(buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, envs.test_envs)
if self.sampling_config.start_timesteps > 0:
train_collector.collect(n_step=self.sampling_config.start_timesteps, random=True)
return train_collector, test_collector
@abstractmethod
@ -222,10 +225,32 @@ class PPOAgentFactory(OnpolicyAgentFactory):
)
class AutoAlphaFactory(ABC):
@abstractmethod
def create_auto_alpha(
self, envs: Environments, optim_factory: OptimizerFactory, device: TDevice,
):
pass
class DefaultAutoAlphaFactory(AutoAlphaFactory): # TODO better name?
def __init__(self, lr: float = 3e-4):
self.lr = lr
def create_auto_alpha(
self, envs: Environments, optim_factory: OptimizerFactory, device: TDevice,
) -> tuple[float, torch.Tensor, torch.optim.Optimizer]:
target_entropy = -np.prod(envs.get_action_shape())
log_alpha = torch.zeros(1, requires_grad=True, device=device)
alpha_optim = torch.optim.Adam([log_alpha], lr=self.lr)
return target_entropy, log_alpha, alpha_optim
@dataclass
class SACConfig:
tau: float = 0.005
gamma: float = 0.99
alpha: float | tuple[float, torch.Tensor, torch.optim.Optimizer] = 0.2
alpha: float | tuple[float, torch.Tensor, torch.optim.Optimizer] | AutoAlphaFactory = 0.2
reward_normalization: bool = False
estimation_step: int = 1
deterministic_eval: bool = True
@ -260,6 +285,10 @@ class SACAgentFactory(OffpolicyAgentFactory):
actor_optim = self.optim_factory.create_optimizer(actor, lr=self.config.actor_lr)
critic1_optim = self.optim_factory.create_optimizer(critic1, lr=self.config.critic1_lr)
critic2_optim = self.optim_factory.create_optimizer(critic2, lr=self.config.critic2_lr)
if isinstance(self.config.alpha, AutoAlphaFactory):
alpha = self.config.alpha.create_auto_alpha(envs, self.optim_factory, device)
else:
alpha = self.config.alpha
return SACPolicy(
actor,
actor_optim,
@ -269,7 +298,7 @@ class SACAgentFactory(OffpolicyAgentFactory):
critic2_optim,
tau=self.config.tau,
gamma=self.config.gamma,
alpha=self.config.alpha,
alpha=alpha,
estimation_step=self.config.estimation_step,
action_space=envs.get_action_space(),
deterministic_eval=self.config.deterministic_eval,

View File

@ -46,6 +46,8 @@ class RLSamplingConfig:
step_per_collect: int = 2048
repeat_per_collect: int = 10
update_per_step: int = 1
start_timesteps: int = 0
start_timesteps_random: bool = False
class RLExperiment(Generic[TPolicy, TTrainer]):

View File

@ -23,7 +23,12 @@ class LoggerFactory(ABC):
class DefaultLoggerFactory(LoggerFactory):
def __init__(self, log_dir: str = "log", logger_type: Literal["tensorboard", "wandb"] = "tensorboard", wandb_project: str | None = None):
def __init__(
self,
log_dir: str = "log",
logger_type: Literal["tensorboard", "wandb"] = "tensorboard",
wandb_project: str | None = None,
):
if logger_type == "wandb" and wandb_project is None:
raise ValueError("Must provide 'wand_project'")
self.log_dir = log_dir
@ -32,7 +37,16 @@ class DefaultLoggerFactory(LoggerFactory):
def create_logger(self, log_name: str, run_id: str | None, config_dict: dict) -> Logger:
writer = SummaryWriter(self.log_dir)
writer.add_text("args", str(dict(log_dir=self.log_dir, logger_type=self.logger_type, wandb_project=self.wandb_project)))
writer.add_text(
"args",
str(
dict(
log_dir=self.log_dir,
logger_type=self.logger_type,
wandb_project=self.wandb_project,
),
),
)
if self.logger_type == "wandb":
logger = WandbLogger(
save_interval=1,