doc fix (#113)
* doc fix * change line Co-authored-by: Trinkle23897 <463003665@qq.com>
This commit is contained in:
parent
9c7d31e5d6
commit
dbbb859ec5
@ -100,14 +100,13 @@ class Batch:
|
||||
* ``done`` the done flag of step :math:`t` ;
|
||||
* ``obs_next`` the observation of step :math:`t+1` ;
|
||||
* ``info`` the info of step :math:`t` (in ``gym.Env``, the ``env.step()``\
|
||||
function return 4 arguments, and the last one is ``info``);
|
||||
function returns 4 arguments, and the last one is ``info``);
|
||||
* ``policy`` the data computed by policy in step :math:`t`;
|
||||
|
||||
:class:`~tianshou.data.Batch` object can be initialized using wide variety
|
||||
of arguments, starting with the key/value pairs or dictionary, but also
|
||||
list and Numpy arrays of :class:`dict` or Batch instances. In which case,
|
||||
each element is considered as an individual sample and get stacked
|
||||
together:
|
||||
:class:`~tianshou.data.Batch` object can be initialized by a wide variety
|
||||
of arguments, ranging from the key/value pairs or dictionary, to list and
|
||||
Numpy arrays of :class:`dict` or Batch instances where each element is
|
||||
considered as an individual sample and get stacked together:
|
||||
::
|
||||
|
||||
>>> data = Batch([{'a': {'b': [0.0, "info"]}}])
|
||||
@ -119,7 +118,7 @@ class Batch:
|
||||
)
|
||||
|
||||
:class:`~tianshou.data.Batch` has the same API as a native Python
|
||||
:class:`dict`. In this regard, one can access to stored data using string
|
||||
:class:`dict`. In this regard, one can access stored data using string
|
||||
key, or iterate over stored data:
|
||||
::
|
||||
|
||||
@ -132,7 +131,7 @@ class Batch:
|
||||
b: [5, 5]
|
||||
|
||||
|
||||
:class:`~tianshou.data.Batch` is also reproduce partially the Numpy API for
|
||||
:class:`~tianshou.data.Batch` also partially reproduces the Numpy API for
|
||||
arrays. It also supports the advanced slicing method, such as batch[:, i],
|
||||
if the index is valid. You can access or iterate over the individual
|
||||
samples, if any:
|
||||
@ -147,7 +146,6 @@ class Batch:
|
||||
>>> for sample in data:
|
||||
>>> print(sample.a)
|
||||
[0., 2.]
|
||||
[1., 3.]
|
||||
|
||||
>>> print(data.shape)
|
||||
[1, 2]
|
||||
@ -195,7 +193,7 @@ class Batch:
|
||||
)
|
||||
|
||||
Note that stacking of inconsistent data is also supported. In which case,
|
||||
None is added in list or :class:`np.ndarray` of objects, 0 otherwise.
|
||||
``None`` is added in list or :class:`np.ndarray` of objects, 0 otherwise.
|
||||
::
|
||||
|
||||
>>> data_1 = Batch(a=np.array([0.0, 2.0]))
|
||||
@ -208,7 +206,7 @@ class Batch:
|
||||
b: array([None, 'done'], dtype=object),
|
||||
)
|
||||
|
||||
Also with method empty (which will set to 0 or ``None`` (with np.object))
|
||||
Method ``empty_`` sets elements to 0 or ``None`` for ``np.object``.
|
||||
::
|
||||
|
||||
>>> data.empty_()
|
||||
@ -248,9 +246,9 @@ class Batch:
|
||||
Convenience helpers are available to convert in-place the stored data into
|
||||
Numpy arrays or Torch tensors.
|
||||
|
||||
Finally, note that :class:`~tianshou.data.Batch` instance are serializable
|
||||
and therefore Pickle compatible. This is especially important for
|
||||
distributed sampling.
|
||||
Finally, note that :class:`~tianshou.data.Batch` is serializable and
|
||||
therefore Pickle compatible. This is especially important for distributed
|
||||
sampling.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
@ -618,7 +616,7 @@ class Batch:
|
||||
|
||||
def split(self, size: Optional[int] = None,
|
||||
shuffle: bool = True) -> Iterator['Batch']:
|
||||
"""Split whole data into multiple small batch.
|
||||
"""Split whole data into multiple small batches.
|
||||
|
||||
:param int size: if it is ``None``, it does not split the data batch;
|
||||
otherwise it will divide the data batch with the given size.
|
||||
|
@ -424,7 +424,7 @@ class PrioritizedReplayBuffer(ReplayBuffer):
|
||||
"""Update priority weight by indice in this buffer.
|
||||
|
||||
:param np.ndarray indice: indice you want to update weight
|
||||
:param np.ndarray new_weight: new priority weight you wangt to update
|
||||
:param np.ndarray new_weight: new priority weight you want to update
|
||||
"""
|
||||
if self._replace:
|
||||
if isinstance(indice, slice):
|
||||
|
Loading…
x
Reference in New Issue
Block a user