modify model.py for multi-player
This commit is contained in:
parent
891c5b1e47
commit
eb0ce95919
155
AlphaGo/model.py
155
AlphaGo/model.py
@ -80,7 +80,8 @@ class Data(object):
|
||||
|
||||
|
||||
class ResNet(object):
|
||||
def __init__(self, board_size, action_num, history_length=1, residual_block_num=10, checkpoint_path=None):
|
||||
def __init__(self, board_size, action_num, history_length=1, residual_block_num=10, black_checkpoint_path=None,
|
||||
white_checkpoint_path=None):
|
||||
"""
|
||||
the resnet model
|
||||
|
||||
@ -88,25 +89,49 @@ class ResNet(object):
|
||||
:param action_num: an integer, number of unique actions at any state
|
||||
:param history_length: an integer, the history length to use, default is 1
|
||||
:param residual_block_num: an integer, the number of residual block, default is 20, at least 1
|
||||
:param checkpoint_path: a string, the path to the checkpoint, default is None,
|
||||
:param black_checkpoint_path: a string, the path to the black checkpoint, default is None,
|
||||
:param white_checkpoint_path: a string, the path to the white checkpoint, default is None,
|
||||
"""
|
||||
self.board_size = board_size
|
||||
self.action_num = action_num
|
||||
self.history_length = history_length
|
||||
self.checkpoint_path = checkpoint_path
|
||||
self.black_checkpoint_path = black_checkpoint_path
|
||||
self.white_checkpoint_path = white_checkpoint_path
|
||||
self.x = tf.placeholder(tf.float32, shape=[None, self.board_size, self.board_size, 2 * self.history_length + 1])
|
||||
self.is_training = tf.placeholder(tf.bool, shape=[])
|
||||
self.z = tf.placeholder(tf.float32, shape=[None, 1])
|
||||
self.pi = tf.placeholder(tf.float32, shape=[None, self.action_num])
|
||||
self._build_network(residual_block_num, self.checkpoint_path)
|
||||
self._build_network('black', residual_block_num)
|
||||
self._build_network('white', residual_block_num)
|
||||
self.sess = multi_gpu.create_session()
|
||||
self.sess.run(tf.global_variables_initializer())
|
||||
if black_checkpoint_path is not None:
|
||||
ckpt_file = tf.train.latest_checkpoint(black_checkpoint_path)
|
||||
if ckpt_file is not None:
|
||||
print('Restoring model from {}...'.format(ckpt_file))
|
||||
self.black_saver.restore(self.sess, ckpt_file)
|
||||
print('Successfully loaded')
|
||||
else:
|
||||
raise ValueError("No model in path {}".format(black_checkpoint_path))
|
||||
|
||||
if white_checkpoint_path is not None:
|
||||
ckpt_file = tf.train.latest_checkpoint(white_checkpoint_path)
|
||||
if ckpt_file is not None:
|
||||
print('Restoring model from {}...'.format(ckpt_file))
|
||||
self.white_saver.restore(self.sess, ckpt_file)
|
||||
print('Successfully loaded')
|
||||
else:
|
||||
raise ValueError("No model in path {}".format(white_checkpoint_path))
|
||||
self.update = [tf.assign(black_params, white_params) for black_params, white_params in
|
||||
zip(self.black_var_list, self.white_var_list)]
|
||||
|
||||
# training hyper-parameters:
|
||||
self.window_length = 3
|
||||
self.window_length = 900
|
||||
self.save_freq = 5000
|
||||
self.training_data = {'states': deque(maxlen=self.window_length), 'probs': deque(maxlen=self.window_length),
|
||||
'winner': deque(maxlen=self.window_length), 'length': deque(maxlen=self.window_length)}
|
||||
|
||||
def _build_network(self, residual_block_num, checkpoint_path):
|
||||
def _build_network(self, scope, residual_block_num):
|
||||
"""
|
||||
build the network
|
||||
|
||||
@ -114,37 +139,34 @@ class ResNet(object):
|
||||
:param checkpoint_path: a string, the path to the checkpoint, if None, use random initialization parameter
|
||||
:return: None
|
||||
"""
|
||||
with tf.variable_scope(scope, reuse=tf.AUTO_REUSE):
|
||||
h = layers.conv2d(self.x, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
|
||||
normalizer_fn=layers.batch_norm,
|
||||
normalizer_params={'is_training': self.is_training,
|
||||
'updates_collections': tf.GraphKeys.UPDATE_OPS},
|
||||
weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
for i in range(residual_block_num - 1):
|
||||
h = residual_block(h, self.is_training)
|
||||
self.__setattr__(scope + '_v', value_head(h, self.is_training))
|
||||
self.__setattr__(scope + '_p', policy_head(h, self.is_training, self.action_num))
|
||||
self.__setattr__(scope + '_prob', tf.nn.softmax(self.__getattribute__(scope + '_p')))
|
||||
self.__setattr__(scope + '_value_loss', tf.reduce_mean(tf.square(self.z - self.__getattribute__(scope + '_v'))))
|
||||
self.__setattr__(scope + '_policy_loss',
|
||||
tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.pi,
|
||||
logits=self.__getattribute__(
|
||||
scope + '_p'))))
|
||||
|
||||
h = layers.conv2d(self.x, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
|
||||
normalizer_fn=layers.batch_norm,
|
||||
normalizer_params={'is_training': self.is_training,
|
||||
'updates_collections': tf.GraphKeys.UPDATE_OPS},
|
||||
weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
for i in range(residual_block_num - 1):
|
||||
h = residual_block(h, self.is_training)
|
||||
self.v = value_head(h, self.is_training)
|
||||
self.p = policy_head(h, self.is_training, self.action_num)
|
||||
self.prob = tf.nn.softmax(self.p)
|
||||
self.value_loss = tf.reduce_mean(tf.square(self.z - self.v))
|
||||
self.policy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.pi, logits=self.p))
|
||||
|
||||
self.reg = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
|
||||
self.total_loss = self.value_loss + self.policy_loss + self.reg
|
||||
self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
|
||||
with tf.control_dependencies(self.update_ops):
|
||||
self.train_op = tf.train.AdamOptimizer(1e-4).minimize(self.total_loss)
|
||||
self.var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
||||
self.saver = tf.train.Saver(max_to_keep=0, var_list=self.var_list)
|
||||
self.sess = multi_gpu.create_session()
|
||||
self.sess.run(tf.global_variables_initializer())
|
||||
if checkpoint_path is not None:
|
||||
ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
|
||||
if ckpt_file is not None:
|
||||
print('Restoring model from {}...'.format(ckpt_file))
|
||||
self.saver.restore(self.sess, ckpt_file)
|
||||
print('Successfully loaded')
|
||||
else:
|
||||
raise ValueError("No model in path {}".format(checkpoint_path))
|
||||
self.__setattr__(scope + '_reg', tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES, scope=scope)))
|
||||
self.__setattr__(scope + '_total_loss', self.__getattribute__(scope + '_value_loss') + self.__getattribute__(
|
||||
scope + '_policy_loss') + self.__getattribute__(scope + '_reg'))
|
||||
self.__setattr__(scope + '_update_ops', tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope=scope))
|
||||
self.__setattr__(scope + '_var_list', tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=scope))
|
||||
with tf.control_dependencies(self.__getattribute__(scope + '_update_ops')):
|
||||
self.__setattr__(scope + '_train_op',
|
||||
tf.train.AdamOptimizer(1e-4).minimize(self.__getattribute__(scope + '_total_loss'),
|
||||
var_list=self.__getattribute__(scope + '_var_list')))
|
||||
self.__setattr__(scope + '_saver',
|
||||
tf.train.Saver(max_to_keep=0, var_list=self.__getattribute__(scope + '_var_list')))
|
||||
|
||||
def __call__(self, state):
|
||||
"""
|
||||
@ -154,15 +176,20 @@ class ResNet(object):
|
||||
:return: a list of tensor, the predicted value and policy given the history and color
|
||||
"""
|
||||
# Note : maybe we can use it for isolating test of MCTS
|
||||
#prob = [1.0 / self.action_num] * self.action_num
|
||||
#return [prob, np.random.uniform(-1, 1)]
|
||||
# prob = [1.0 / self.action_num] * self.action_num
|
||||
# return [prob, np.random.uniform(-1, 1)]
|
||||
history, color = state
|
||||
if len(history) != self.history_length:
|
||||
raise ValueError(
|
||||
'The length of history cannot meet the need of the model, given {}, need {}'.format(len(history),
|
||||
self.history_length))
|
||||
eval_state = self._history2state(history, color)
|
||||
return self.sess.run([self.prob, self.v], feed_dict={self.x: eval_state, self.is_training: False})
|
||||
if color == +1:
|
||||
return self.sess.run([self.black_prob, self.black_v],
|
||||
feed_dict={self.x: eval_state, self.is_training: False})
|
||||
if color == -1:
|
||||
return self.sess.run([self.white_prob, self.white_v],
|
||||
feed_dict={self.x: eval_state, self.is_training: False})
|
||||
|
||||
def _history2state(self, history, color):
|
||||
"""
|
||||
@ -174,10 +201,12 @@ class ResNet(object):
|
||||
"""
|
||||
state = np.zeros([1, self.board_size, self.board_size, 2 * self.history_length + 1])
|
||||
for i in range(self.history_length):
|
||||
state[0, :, :, i] = np.array(np.array(history[i]).flatten() == np.ones(self.board_size ** 2)).reshape(self.board_size,
|
||||
self.board_size)
|
||||
state[0, :, :, i] = np.array(np.array(history[i]).flatten() == np.ones(self.board_size ** 2)).reshape(
|
||||
self.board_size,
|
||||
self.board_size)
|
||||
state[0, :, :, i + self.history_length] = np.array(
|
||||
np.array(history[i]).flatten() == -np.ones(self.board_size ** 2)).reshape(self.board_size, self.board_size)
|
||||
np.array(history[i]).flatten() == -np.ones(self.board_size ** 2)).reshape(self.board_size,
|
||||
self.board_size)
|
||||
# TODO: need a config to specify the BLACK and WHITE
|
||||
if color == +1:
|
||||
state[0, :, :, 2 * self.history_length] = np.ones([self.board_size, self.board_size])
|
||||
@ -187,19 +216,27 @@ class ResNet(object):
|
||||
|
||||
# TODO: design the interface between the environment and training
|
||||
def train(self, mode='memory', *args, **kwargs):
|
||||
"""
|
||||
The method to train the network
|
||||
|
||||
:param target: a string, which to optimize, can only be "both", "black" and "white"
|
||||
:param mode: a string, how to optimize, can only be "memory" and "file"
|
||||
"""
|
||||
if mode == 'memory':
|
||||
pass
|
||||
if mode == 'file':
|
||||
self._train_with_file(data_path=kwargs['data_path'], batch_size=kwargs['batch_size'],
|
||||
checkpoint_path=kwargs['checkpoint_path'])
|
||||
save_path=kwargs['save_path'])
|
||||
|
||||
def _train_with_file(self, data_path, batch_size, checkpoint_path):
|
||||
def _train_with_file(self, data_path, batch_size, save_path):
|
||||
# check if the path is valid
|
||||
if not os.path.exists(data_path):
|
||||
raise ValueError("{} doesn't exist".format(data_path))
|
||||
self.checkpoint_path = checkpoint_path
|
||||
if not os.path.exists(self.checkpoint_path):
|
||||
os.mkdir(self.checkpoint_path)
|
||||
self.save_path = save_path
|
||||
if not os.path.exists(self.save_path):
|
||||
os.mkdir(self.save_path)
|
||||
os.mkdir(self.save_path + 'black')
|
||||
os.mkdir(self.save_path + 'white')
|
||||
|
||||
new_file_list = []
|
||||
all_file_list = []
|
||||
@ -227,7 +264,8 @@ class ResNet(object):
|
||||
else:
|
||||
start_time = time.time()
|
||||
for i in range(batch_size):
|
||||
priority = np.array(self.training_data['length']) / (0.0 + np.sum(np.array(self.training_data['length'])))
|
||||
priority = np.array(self.training_data['length']) / (
|
||||
0.0 + np.sum(np.array(self.training_data['length'])))
|
||||
game_num = np.random.choice(self.window_length, 1, p=priority)[0]
|
||||
state_num = np.random.randint(self.training_data['length'][game_num])
|
||||
rotate_times = np.random.randint(4)
|
||||
@ -237,11 +275,15 @@ class ResNet(object):
|
||||
self._preprocession(self.training_data['states'][game_num][state_num], reflect_times,
|
||||
reflect_orientation, rotate_times))
|
||||
training_data['probs'].append(np.concatenate(
|
||||
[self._preprocession(self.training_data['probs'][game_num][state_num][:-1].reshape(self.board_size, self.board_size, 1), reflect_times,
|
||||
reflect_orientation, rotate_times).reshape(1, self.board_size**2), self.training_data['probs'][game_num][state_num][-1].reshape(1,1)], axis=1))
|
||||
[self._preprocession(
|
||||
self.training_data['probs'][game_num][state_num][:-1].reshape(self.board_size,
|
||||
self.board_size, 1),
|
||||
reflect_times,
|
||||
reflect_orientation, rotate_times).reshape(1, self.board_size ** 2),
|
||||
self.training_data['probs'][game_num][state_num][-1].reshape(1, 1)], axis=1))
|
||||
training_data['winner'].append(self.training_data['winner'][game_num][state_num].reshape(1, 1))
|
||||
value_loss, policy_loss, reg, _ = self.sess.run(
|
||||
[self.value_loss, self.policy_loss, self.reg, self.train_op],
|
||||
[self.black_value_loss, self.black_policy_loss, self.black_reg, self.black_train_op],
|
||||
feed_dict={self.x: np.concatenate(training_data['states'], axis=0),
|
||||
self.z: np.concatenate(training_data['winner'], axis=0),
|
||||
self.pi: np.concatenate(training_data['probs'], axis=0),
|
||||
@ -252,8 +294,11 @@ class ResNet(object):
|
||||
value_loss,
|
||||
policy_loss, reg))
|
||||
if iters % self.save_freq == 0:
|
||||
save_path = "Iteration{}.ckpt".format(iters)
|
||||
self.saver.save(self.sess, self.checkpoint_path + save_path)
|
||||
ckpt_file = "Iteration{}.ckpt".format(iters)
|
||||
self.black_saver.save(self.sess, self.save_path + 'black/' + ckpt_file)
|
||||
self.sess.run(self.update)
|
||||
self.white_saver.save(self.sess, self.save_path + 'white/' + ckpt_file)
|
||||
|
||||
for key in training_data.keys():
|
||||
training_data[key] = []
|
||||
iters += 1
|
||||
@ -342,5 +387,5 @@ class ResNet(object):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = ResNet(board_size=9, action_num=82, history_length=8)
|
||||
model.train("file", data_path="./data/", batch_size=128, checkpoint_path="./checkpoint/")
|
||||
model = ResNet(board_size=8, action_num=65, history_length=1, black_checkpoint_path="./checkpoint/black", white_checkpoint_path="./checkpoint/white")
|
||||
model.train(mode="file", data_path="./data/", batch_size=128, save_path="./checkpoint/")
|
||||
|
Loading…
x
Reference in New Issue
Block a user