finish ddpg example. all examples under examples/ (except those containing 'contrib' and 'fail') can run! advantage estimation module is not complete yet.

This commit is contained in:
haoshengzou 2018-01-18 17:38:52 +08:00
parent 8fbde8283f
commit f32e1d9c12
12 changed files with 327 additions and 11 deletions

View File

@ -49,10 +49,10 @@ if __name__ == '__main__':
### 2. build policy, critic, loss, optimizer
actor = policy.OnehotCategorical(my_network, observation_placeholder=observation_ph, weight_update=1)
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph) # no target network
actor_loss = losses.REINFORCE(actor)
critic_loss = losses.state_value_mse(critic)
critic_loss = losses.value_mse(critic)
total_loss = actor_loss + critic_loss
optimizer = tf.train.AdamOptimizer(1e-4)

View File

@ -57,7 +57,7 @@ if __name__ == '__main__':
actor_loss = losses.vanilla_policy_gradient(actor)
critic_loss = losses.state_value_mse(critic)
critic_loss = losses.value_mse(critic)
total_loss = actor_loss + critic_loss
optimizer = tf.train.AdamOptimizer(1e-4)

View File

@ -51,7 +51,7 @@ if __name__ == '__main__':
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
actor_loss = losses.REINFORCE(actor)
critic_loss = losses.state_value_mse(critic)
critic_loss = losses.value_mse(critic)
actor_optimizer = tf.train.AdamOptimizer(1e-4)
actor_train_op = actor_optimizer.minimize(actor_loss, var_list=actor.trainable_variables)

89
examples/ddpg_example.py Normal file
View File

@ -0,0 +1,89 @@
#!/usr/bin/env python
from __future__ import absolute_import
import tensorflow as tf
import gym
import numpy as np
import time
# our lib imports here! It's ok to append path in examples
import sys
sys.path.append('..')
from tianshou.core import losses
from tianshou.data.batch import Batch
import tianshou.data.advantage_estimation as advantage_estimation
import tianshou.core.policy as policy
import tianshou.core.value_function.action_value as value_function
import tianshou.core.opt as opt
if __name__ == '__main__':
env = gym.make('Pendulum-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.shape
clip_param = 0.2
num_batches = 10
batch_size = 512
seed = 0
np.random.seed(seed)
tf.set_random_seed(seed)
### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
action_ph = tf.placeholder(tf.float32, shape=(None,) + action_dim)
def my_network():
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.relu)
net = tf.layers.dense(net, 32, activation=tf.nn.relu)
action = tf.layers.dense(net, action_dim[0], activation=None)
action_value_input = tf.concat([observation_ph, action_ph], axis=1)
net = tf.layers.dense(action_value_input, 32, activation=tf.nn.relu)
net = tf.layers.dense(net, 32, activation=tf.nn.relu)
action_value = tf.layers.dense(net, 1, activation=None)
return action, action_value
### 2. build policy, loss, optimizer
actor = policy.Deterministic(my_network, observation_placeholder=observation_ph, weight_update=1e-3)
critic = value_function.ActionValue(my_network, observation_placeholder=observation_ph,
action_placeholder=action_ph, weight_update=1e-3)
critic_loss = losses.value_mse(critic)
critic_optimizer = tf.train.AdamOptimizer(1e-3)
critic_train_op = critic_optimizer.minimize(critic_loss, var_list=critic.trainable_variables)
dpg_grads = opt.DPG(actor, critic) # not sure if it's correct
actor_optimizer = tf.train.AdamOptimizer(1e-4)
actor_train_op = actor_optimizer.apply_gradients(dpg_grads)
### 3. define data collection
data_collector = Batch(env, actor, [advantage_estimation.ddpg_return(actor, critic)], [actor, critic])
### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
# assign actor to pi_old
actor.sync_weights() # TODO: automate this for policies with target network
critic.sync_weights()
start_time = time.time()
for i in range(100):
# collect data
data_collector.collect(num_episodes=50)
# print current return
print('Epoch {}:'.format(i))
data_collector.statistics()
# update network
for _ in range(num_batches):
feed_dict = data_collector.next_batch(batch_size)
sess.run([actor_train_op, critic_train_op], feed_dict=feed_dict)
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))

View File

@ -16,6 +16,9 @@ import tianshou.core.policy.dqn as policy # TODO: fix imports as zhusuan so tha
import tianshou.core.value_function.action_value as value_function
# TODO: why this solves cartpole even without training?
if __name__ == '__main__':
env = gym.make('CartPole-v0')
observation_dim = env.observation_space.shape

View File

@ -45,13 +45,13 @@ def REINFORCE(policy):
return REINFORCE_loss
def state_value_mse(state_value_function):
def value_mse(state_value_function):
"""
L2 loss of state value
:param state_value_function: instance of StateValue
:return: tensor of the mse loss
"""
target_value_ph = tf.placeholder(tf.float32, shape=(None,), name='state_value_mse/state_value_placeholder')
target_value_ph = tf.placeholder(tf.float32, shape=(None,), name='value_mse/return_placeholder')
state_value_function.managed_placeholders['return'] = target_value_ph
state_value = state_value_function.value_tensor

21
tianshou/core/opt.py Normal file
View File

@ -0,0 +1,21 @@
import tensorflow as tf
def DPG(policy, action_value):
"""
construct the gradient tensor of deterministic policy gradient
:param policy:
:param action_value:
:return: list of (gradient, variable) pairs
"""
trainable_variables = policy.trainable_variables
critic_action_input = action_value._action_placeholder
critic_value_loss = -tf.reduce_mean(action_value.value_tensor)
policy_action_output = policy.action
grad_ys = tf.gradients(critic_value_loss, critic_action_input)
grad_policy_vars = tf.gradients(policy_action_output, trainable_variables, grad_ys=grad_ys)
grads_and_vars = zip(grad_policy_vars, trainable_variables)
return grads_and_vars

View File

@ -0,0 +1,3 @@
from .deterministic import *
from .dqn import *
from .stochastic import *

View File

@ -0,0 +1,111 @@
import tensorflow as tf
from .base import PolicyBase
class Deterministic(PolicyBase):
"""
deterministic policy as used in deterministic policy gradient methods
"""
def __init__(self, policy_callable, observation_placeholder, weight_update=1):
self._observation_placeholder = observation_placeholder
self.managed_placeholders = {'observation': observation_placeholder}
self.weight_update = weight_update
self.interaction_count = -1 # defaults to -1. only useful if weight_update > 1.
# build network, action and value
with tf.variable_scope('network', reuse=tf.AUTO_REUSE):
action, _ = policy_callable()
self.action = action
# TODO: self._action should be exactly the action tensor to run that directly gives action_dim
self.trainable_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='network')
# deal with target network
if self.weight_update == 1:
self.weight_update_ops = None
self.sync_weights_ops = None
else: # then we need to build another tf graph as target network
with tf.variable_scope('net_old', reuse=tf.AUTO_REUSE):
action, _ = policy_callable()
self.action_old = action
network_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='network')
network_old_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='net_old')
# TODO: use a scope that the user will almost surely not use. so get_collection will return
# the correct weights and old_weights, since it filters by regular expression
# or we write a util to parse the variable names and use only the topmost scope
assert len(network_weights) == len(network_old_weights)
self.sync_weights_ops = [tf.assign(variable_old, variable)
for (variable_old, variable) in zip(network_old_weights, network_weights)]
if weight_update == 0:
self.weight_update_ops = self.sync_weights_ops
elif 0 < weight_update < 1: # as in DDPG
self.weight_update_ops = [tf.assign(variable_old,
weight_update * variable + (1 - weight_update) * variable_old)
for (variable_old, variable) in zip(network_old_weights, network_weights)]
else:
self.interaction_count = 0 # as in DQN
import math
self.weight_update = math.ceil(weight_update)
@property
def action_shape(self):
return self.action.shape.as_list()[1:]
def act(self, observation, my_feed_dict={}):
# TODO: this may be ugly. also maybe huge problem when parallel
sess = tf.get_default_session()
# observation[None] adds one dimension at the beginning
feed_dict = {self._observation_placeholder: observation[None]}
feed_dict.update(my_feed_dict)
sampled_action = sess.run(self.action, feed_dict=feed_dict)
sampled_action = sampled_action[0]
return sampled_action
def update_weights(self):
"""
updates the weights of policy_old.
:return:
"""
if self.weight_update_ops is not None:
sess = tf.get_default_session()
sess.run(self.weight_update_ops)
def sync_weights(self):
"""
sync the weights of network_old. Direct copy the weights of network.
:return:
"""
if self.sync_weights_ops is not None:
sess = tf.get_default_session()
sess.run(self.sync_weights_ops)
def eval_action(self, observation):
"""
evaluate action in minibatch
:param observation:
:return: 2-D numpy array
"""
sess = tf.get_default_session()
feed_dict = {self._observation_placeholder: observation}
action = sess.run(self.action, feed_dict=feed_dict)
return action
def eval_action_old(self, observation):
"""
evaluate action in minibatch
:param observation:
:return: 2-D numpy array
"""
sess = tf.get_default_session()
feed_dict = {self._observation_placeholder: observation}
action = sess.run(self.action_old, feed_dict=feed_dict)
return action

View File

@ -8,12 +8,47 @@ class ActionValue(ValueFunctionBase):
"""
class of action values Q(s, a).
"""
def __init__(self, value_tensor, observation_placeholder, action_placeholder):
def __init__(self, network_callable, observation_placeholder, action_placeholder, weight_update=1):
self._observation_placeholder = observation_placeholder
self._action_placeholder = action_placeholder
super(ActionValue, self).__init__(
value_tensor=value_tensor,
observation_placeholder=observation_placeholder
)
self.managed_placeholders = {'observation': observation_placeholder, 'action': action_placeholder}
self.weight_update = weight_update
self.interaction_count = -1 # defaults to -1. only useful if weight_update > 1.
with tf.variable_scope('network', reuse=tf.AUTO_REUSE):
value_tensor = network_callable()[-1]
self.trainable_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='network')
super(ActionValue, self).__init__(value_tensor, observation_placeholder=observation_placeholder)
# deal with target network
if self.weight_update == 1:
self.weight_update_ops = None
self.sync_weights_ops = None
else: # then we need to build another tf graph as target network
with tf.variable_scope('net_old', reuse=tf.AUTO_REUSE):
value_tensor = network_callable()[-1]
self.value_tensor_old = tf.squeeze(value_tensor)
network_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='network')
network_old_weights = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='net_old')
assert len(network_weights) == len(network_old_weights)
self.sync_weights_ops = [tf.assign(variable_old, variable)
for (variable_old, variable) in zip(network_old_weights, network_weights)]
if weight_update == 0:
self.weight_update_ops = self.sync_weights_ops
elif 0 < weight_update < 1: # useful in DDPG
self.weight_update_ops = [tf.assign(variable_old,
weight_update * variable + (1 - weight_update) * variable_old)
for (variable_old, variable) in zip(network_old_weights, network_weights)]
else:
self.interaction_count = 0
import math
self.weight_update = math.ceil(weight_update)
self.weight_update_ops = self.sync_weights_ops
def eval_value(self, observation, action):
"""
@ -27,6 +62,35 @@ class ActionValue(ValueFunctionBase):
return sess.run(self.value_tensor, feed_dict=
{self._observation_placeholder: observation, self._action_placeholder: action})
def eval_value_old(self, observation, action):
"""
eval value using target network
:param observation: numpy array of obs
:param action: numpy array of action
:return: numpy array of action value
"""
sess = tf.get_default_session()
feed_dict = {self._observation_placeholder: observation, self._action_placeholder: action}
return sess.run(self.value_tensor_old, feed_dict=feed_dict)
def sync_weights(self):
"""
sync the weights of network_old. Direct copy the weights of network.
:return:
"""
if self.sync_weights_ops is not None:
sess = tf.get_default_session()
sess.run(self.sync_weights_ops)
def update_weights(self):
"""
updates the weights of policy_old.
:return:
"""
if self.weight_update_ops is not None:
sess = tf.get_default_session()
sess.run(self.weight_update_ops)
class DQN(ValueFunctionBase):
"""

View File

@ -76,6 +76,31 @@ class nstep_return:
return {'return': return_}
class ddpg_return:
"""
compute the return as in DDPG. this seems to have to be special
"""
def __init__(self, actor, critic, use_target_network=True):
self.actor = actor
self.critic = critic
self.use_target_network = use_target_network
def __call__(self, raw_data):
observation = raw_data['observation']
reward = raw_data['reward']
if self.use_target_network:
action_target = self.actor.eval_action_old(observation)
value_target = self.critic.eval_value_old(observation, action_target)
else:
action_target = self.actor.eval_action(observation)
value_target = self.critic.eval_value(observation, action_target)
return_ = reward + value_target
return {'return': return_}
class nstep_q_return:
"""
compute the n-step return for Q-learning targets