add dqn and ppo examples, bit clean-up

This commit is contained in:
haoshengzou 2018-06-14 11:18:39 +08:00
parent 6f206759ab
commit f8c359b094
4 changed files with 163 additions and 11 deletions

View File

@ -1,5 +1,3 @@
from __future__ import absolute_import
import tensorflow as tf
import time
import numpy as np
@ -13,7 +11,6 @@ if __name__ == '__main__':
observation_dim = env.observation_space.shape
action_dim = env.action_space.n
clip_param = 0.2
num_batches = 10
batch_size = 512

View File

@ -1,20 +1,12 @@
#!/usr/bin/env python
from __future__ import absolute_import
import tensorflow as tf
import gym
import numpy as np
import time
import argparse
import tianshou as ts
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--render", action="store_true", default=False)
args = parser.parse_args()
env = gym.make('Pendulum-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.shape

83
examples/dqn.py Normal file
View File

@ -0,0 +1,83 @@
import tensorflow as tf
import gym
import numpy as np
import time
import tianshou as ts
if __name__ == '__main__':
env = gym.make('CartPole-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.n
# hyper-parameters
batch_size = 32
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
def my_network():
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
action_values = tf.layers.dense(net, action_dim, activation=None)
return None, action_values # no policy head
### 2. build policy, loss, optimizer
dqn = ts.value_function.DQN(my_network, observation_placeholder=observation_ph, has_old_net=True)
pi = ts.policy.DQN(dqn)
dqn_loss = ts.losses.value_mse(dqn)
total_loss = dqn_loss
optimizer = tf.train.AdamOptimizer(1e-4)
train_op = optimizer.minimize(total_loss, var_list=list(dqn.trainable_variables))
### 3. define data collection
replay_buffer = ts.data.VanillaReplayBuffer(capacity=2e4, nstep=1)
process_functions = [ts.data.advantage_estimation.nstep_q_return(1, dqn)]
managed_networks = [dqn]
data_collector = ts.data.DataCollector(
env=env,
policy=pi,
data_buffer=replay_buffer,
process_functions=process_functions,
managed_networks=managed_networks
)
### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
# sync target network in the beginning
pi.sync_weights()
start_time = time.time()
data_collector.collect(num_timesteps=5000)
for i in range(int(1e8)): # number of training steps
# collect data
data_collector.collect(num_timesteps=4)
# update network
feed_dict = data_collector.next_batch(batch_size)
sess.run(train_op, feed_dict=feed_dict)
if i % 5000 == 0:
print('Step {}, elapsed time: {:.1f} min'.format(i, (time.time() - start_time) / 60))
# epsilon 0.05 as in nature paper
pi.set_epsilon_test(0.05)
ts.data.test_policy_in_env(pi, env, num_timesteps=1000)
# update target network
if i % 1000 == 0:
pi.sync_weights()

80
examples/ppo.py Normal file
View File

@ -0,0 +1,80 @@
import tensorflow as tf
import gym
import numpy as np
import time
import tianshou as ts
if __name__ == '__main__':
env = gym.make('CartPole-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.n
clip_param = 0.2
num_batches = 10
batch_size = 512
seed = 0
np.random.seed(seed)
tf.set_random_seed(seed)
### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
def my_policy():
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
action_logits = tf.layers.dense(net, action_dim, activation=None)
action_dist = tf.distributions.Categorical(logits=action_logits)
return action_dist, None
### 2. build policy, loss, optimizer
pi = ts.policy.Distributional(my_policy, observation_placeholder=observation_ph, has_old_net=True)
ppo_loss_clip = ts.losses.ppo_clip(pi, clip_param)
total_loss = ppo_loss_clip
optimizer = tf.train.AdamOptimizer(1e-4)
train_op = optimizer.minimize(total_loss, var_list=list(pi.trainable_variables))
### 3. define data collection
data_buffer = ts.data.BatchSet()
data_collector = ts.data.DataCollector(
env=env,
policy=pi,
data_buffer=data_buffer,
process_functions=[ts.data.advantage_estimation.full_return],
managed_networks=[pi],
)
### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
# assign actor to pi_old
pi.sync_weights()
start_time = time.time()
for i in range(1000):
# collect data
data_collector.collect(num_episodes=50)
# print current return
print('Epoch {}:'.format(i))
data_buffer.statistics()
# update network
for _ in range(num_batches):
feed_dict = data_collector.next_batch(batch_size)
sess.run(train_op, feed_dict=feed_dict)
# assigning pi_old to be current pi
pi.sync_weights()
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))