merge flatten and deflatten, rename variable for clarity
This commit is contained in:
parent
4a2d8f0003
commit
fc8114fe35
@ -167,7 +167,7 @@ class GTPEngine():
|
||||
move = self._parse_move(args)
|
||||
if move:
|
||||
color, vertex = move
|
||||
res = self._game.do_move(color, vertex)
|
||||
res = self._game.play_move(color, vertex)
|
||||
if res:
|
||||
return None, True
|
||||
else:
|
||||
@ -177,7 +177,7 @@ class GTPEngine():
|
||||
def cmd_genmove(self, args, **kwargs):
|
||||
color = self._parse_color(args)
|
||||
if color:
|
||||
move = self._game.gen_move(color)
|
||||
move = self._game.think_play_move(color)
|
||||
return self._vertex_point2string(move), True
|
||||
else:
|
||||
return 'unknown player', False
|
||||
|
@ -77,7 +77,7 @@ class Game:
|
||||
state[0, :, :, 16] = np.zeros([self.size, self.size])
|
||||
return state
|
||||
|
||||
def strategy_gen_move(self, latest_boards, color):
|
||||
def think(self, latest_boards, color):
|
||||
self.simulator.simulate_latest_boards = copy.copy(latest_boards)
|
||||
self.simulator.simulate_board = copy.copy(latest_boards[-1])
|
||||
nn_input = self.generate_nn_input(self.simulator.simulate_latest_boards, color)
|
||||
@ -91,17 +91,18 @@ class Game:
|
||||
move = self._deflatten(choice)
|
||||
return move, prob
|
||||
|
||||
def do_move(self, color, vertex):
|
||||
def play_move(self, color, vertex):
|
||||
# this function can be called directly to play the opponent's move
|
||||
if vertex == utils.PASS:
|
||||
return True
|
||||
res = self.executor.do_move(color, vertex)
|
||||
return res
|
||||
|
||||
def gen_move(self, color):
|
||||
# move = self.strategy.gen_move(color)
|
||||
# return move
|
||||
move, self.prob = self.strategy_gen_move(self.latest_boards, color)
|
||||
self.do_move(color, move)
|
||||
def think_play_move(self, color):
|
||||
# although we dont need to return self.prob, however it is needed for neural network training
|
||||
move, self.prob = self.think(self.latest_boards, color)
|
||||
# play the move immediately
|
||||
self.play_move(color, move)
|
||||
return move
|
||||
|
||||
def status2symbol(self, s):
|
||||
|
@ -10,7 +10,7 @@ import tensorflow as tf
|
||||
from collections import deque
|
||||
from tianshou.core.mcts.mcts import MCTS
|
||||
|
||||
DELTA = [[1, 0], [-1, 0], [0, -1], [0, 1]]
|
||||
NEIGHBOR_OFFSET = [[1, 0], [-1, 0], [0, -1], [0, 1]]
|
||||
CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
|
||||
|
||||
class GoEnv:
|
||||
@ -19,17 +19,8 @@ class GoEnv:
|
||||
self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
|
||||
self.simulate_latest_boards = deque(maxlen=8)
|
||||
|
||||
def simulate_flatten(self, vertex):
|
||||
x, y = vertex
|
||||
return (x - 1) * self.game.size + (y - 1)
|
||||
|
||||
def simulate_deflatten(self, idx):
|
||||
x = idx // self.game.size + 1
|
||||
y = idx % self.game.size + 1
|
||||
return (x, y)
|
||||
|
||||
def _find_group(self, start):
|
||||
color = self.simulate_board[self.simulate_flatten(start)]
|
||||
color = self.simulate_board[self.game._flatten(start)]
|
||||
# print ("color : ", color)
|
||||
chain = set()
|
||||
frontier = [start]
|
||||
@ -40,32 +31,32 @@ class GoEnv:
|
||||
chain.add(current)
|
||||
for n in self._neighbor(current):
|
||||
# print n, self._flatten(n), self.board[self._flatten(n)],
|
||||
if self.simulate_board[self.simulate_flatten(n)] == color and not n in chain:
|
||||
if self.simulate_board[self.game._flatten(n)] == color and not n in chain:
|
||||
frontier.append(n)
|
||||
if self.simulate_board[self.simulate_flatten(n)] == utils.EMPTY:
|
||||
if self.simulate_board[self.game._flatten(n)] == utils.EMPTY:
|
||||
has_liberty = True
|
||||
return has_liberty, chain
|
||||
|
||||
def _is_suicide(self, color, vertex):
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = color # assume that we already take this move
|
||||
self.simulate_board[self.game._flatten(vertex)] = color # assume that we already take this move
|
||||
suicide = False
|
||||
|
||||
has_liberty, group = self._find_group(vertex)
|
||||
if not has_liberty:
|
||||
suicide = True # no liberty, suicide
|
||||
for n in self._neighbor(vertex):
|
||||
if self.simulate_board[self.simulate_flatten(n)] == utils.another_color(color):
|
||||
if self.simulate_board[self.game._flatten(n)] == utils.another_color(color):
|
||||
opponent_liberty, group = self._find_group(n)
|
||||
if not opponent_liberty:
|
||||
suicide = False # this move is able to take opponent's stone, not suicide
|
||||
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = utils.EMPTY # undo this move
|
||||
self.simulate_board[self.game._flatten(vertex)] = utils.EMPTY # undo this move
|
||||
return suicide
|
||||
|
||||
def _check_global_isomorphous(self, color, vertex):
|
||||
##backup
|
||||
_board = copy.copy(self.simulate_board)
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = color
|
||||
self.simulate_board[self.game._flatten(vertex)] = color
|
||||
self._process_board(color, vertex)
|
||||
if self.simulate_board in self.game.history:
|
||||
res = True
|
||||
@ -84,7 +75,7 @@ class GoEnv:
|
||||
def _neighbor(self, vertex):
|
||||
x, y = vertex
|
||||
nei = []
|
||||
for d in DELTA:
|
||||
for d in NEIGHBOR_OFFSET:
|
||||
_x = x + d[0]
|
||||
_y = y + d[1]
|
||||
if self._in_board((_x, _y)):
|
||||
@ -104,16 +95,16 @@ class GoEnv:
|
||||
def _process_board(self, color, vertex):
|
||||
nei = self._neighbor(vertex)
|
||||
for n in nei:
|
||||
if self.simulate_board[self.simulate_flatten(n)] == utils.another_color(color):
|
||||
if self.simulate_board[self.game._flatten(n)] == utils.another_color(color):
|
||||
has_liberty, group = self._find_group(n)
|
||||
if not has_liberty:
|
||||
for b in group:
|
||||
self.simulate_board[self.simulate_flatten(b)] = utils.EMPTY
|
||||
self.simulate_board[self.game._flatten(b)] = utils.EMPTY
|
||||
|
||||
def _is_eye(self, color, vertex):
|
||||
nei = self._neighbor(vertex)
|
||||
cor = self._corner(vertex)
|
||||
ncolor = {color == self.simulate_board[self.simulate_flatten(n)] for n in nei}
|
||||
ncolor = {color == self.simulate_board[self.game._flatten(n)] for n in nei}
|
||||
if False in ncolor:
|
||||
# print "not all neighbors are in same color with us"
|
||||
return False
|
||||
@ -122,7 +113,7 @@ class GoEnv:
|
||||
# print "all neighbors are in same group and same color with us"
|
||||
return True
|
||||
else:
|
||||
opponent_number = [self.simulate_board[self.simulate_flatten(c)] for c in cor].count(-color)
|
||||
opponent_number = [self.simulate_board[self.game._flatten(c)] for c in cor].count(-color)
|
||||
opponent_propotion = float(opponent_number) / float(len(cor))
|
||||
if opponent_propotion < 0.5:
|
||||
# print "few opponents, real eye"
|
||||
@ -145,7 +136,7 @@ class GoEnv:
|
||||
if action == self.game.size ** 2:
|
||||
vertex = (0, 0)
|
||||
else:
|
||||
vertex = self.simulate_deflatten(action)
|
||||
vertex = self.game._deflatten(action)
|
||||
if state[0, 0, 0, -1] == utils.BLACK:
|
||||
color = utils.BLACK
|
||||
else:
|
||||
@ -160,7 +151,7 @@ class GoEnv:
|
||||
return False
|
||||
|
||||
### already have stone
|
||||
if not self.simulate_board[self.simulate_flatten(vertex)] == utils.EMPTY:
|
||||
if not self.simulate_board[self.game._flatten(vertex)] == utils.EMPTY:
|
||||
# print(np.array(self.board).reshape(9, 9))
|
||||
# print(vertex)
|
||||
return False
|
||||
@ -182,14 +173,14 @@ class GoEnv:
|
||||
if vertex == utils.PASS:
|
||||
return True
|
||||
|
||||
id_ = self.simulate_flatten(vertex)
|
||||
id_ = self.game._flatten(vertex)
|
||||
if self.simulate_board[id_] == utils.EMPTY:
|
||||
self.simulate_board[id_] = color
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
def step_forward(self, state, action):
|
||||
def simulate_step_forward(self, state, action):
|
||||
if state[0, 0, 0, -1] == 1:
|
||||
color = utils.BLACK
|
||||
else:
|
||||
@ -197,7 +188,7 @@ class GoEnv:
|
||||
if action == self.game.size ** 2:
|
||||
vertex = utils.PASS
|
||||
else:
|
||||
vertex = self.simulate_deflatten(action)
|
||||
vertex = self.game._deflatten(action)
|
||||
# print(vertex)
|
||||
# print(self.board)
|
||||
self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
|
||||
|
@ -19,10 +19,10 @@ class rollout_policy(evaluator):
|
||||
# TODO: prior for rollout policy
|
||||
total_reward = 0.
|
||||
action = np.random.randint(0, self.action_num)
|
||||
state, reward = self.env.step_forward(state, action)
|
||||
state, reward = self.env.simulate_step_forward(state, action)
|
||||
total_reward += reward
|
||||
while state is not None:
|
||||
action = np.random.randint(0, self.action_num)
|
||||
state, reward = self.env.step_forward(state, action)
|
||||
state, reward = self.env.simulate_step_forward(state, action)
|
||||
total_reward += reward
|
||||
return np.ones([self.action_num])/self.action_num, total_reward
|
||||
|
@ -116,7 +116,7 @@ class ActionNode(object):
|
||||
self.next_state = tuple2list(self.next_state)
|
||||
|
||||
def selection(self, simulator):
|
||||
self.next_state, self.reward = simulator.step_forward(self.parent.state, self.action)
|
||||
self.next_state, self.reward = simulator.simulate_step_forward(self.parent.state, self.action)
|
||||
self.origin_state = self.next_state
|
||||
self.state_type = type(self.next_state)
|
||||
self.type_conversion_to_tuple()
|
||||
|
Loading…
x
Reference in New Issue
Block a user