8 Commits

Author SHA1 Message Date
ChenDRAG
1423eeb3b2
Add warnings for duplicate usage of action-bounded actor and action scaling method (#850)
- Fix the current bug discussed in #844 in `test_ppo.py`.
- Add warning for `ActorProb ` if both `max_action ` and
`unbounded=True` are used for model initializations.
- Add warning for PGpolicy and DDPGpolicy if they find duplicate usage
of action-bounded actor and action scaling method.
2023-04-23 16:03:31 -07:00
Markus Krimmel
6c6c872523
Gymnasium Integration (#789)
Changes:
- Disclaimer in README
- Replaced all occurences of Gym with Gymnasium
- Removed code that is now dead since we no longer need to support the
old step API
- Updated type hints to only allow new step API
- Increased required version of envpool to support Gymnasium
- Increased required version of PettingZoo to support Gymnasium
- Updated `PettingZooEnv` to only use the new step API, removed hack to
also support old API
- I had to add some `# type: ignore` comments, due to new type hinting
in Gymnasium. I'm not that familiar with type hinting but I believe that
the issue is on the Gymnasium side and we are looking into it.
- Had to update `MyTestEnv` to support `options` kwarg
- Skip NNI tests because they still use OpenAI Gym
- Also allow `PettingZooEnv` in vector environment
- Updated doc page about ReplayBuffer to also talk about terminated and
truncated flags.

Still need to do: 
- Update the Jupyter notebooks in docs
- Check the entire code base for more dead code (from compatibility
stuff)
- Check the reset functions of all environments/wrappers in code base to
make sure they use the `options` kwarg
- Someone might want to check test_env_finite.py
- Is it okay to allow `PettingZooEnv` in vector environments? Might need
to update docs?
2023-02-03 11:57:27 -08:00
Jiayi Weng
2a9c9289e5
rename save_fn to save_best_fn to avoid ambiguity (#575)
This PR also introduces `tianshou.utils.deprecation` for a unified deprecation wrapper.
2022-03-22 04:29:27 +08:00
Jose Antonio Martin H
10d919052b
Add Trainers as generators (#559)
The new proposed feature is to have trainers as generators.
The usage pattern is:

```python
trainer = OnPolicyTrainer(...)
for epoch, epoch_stat, info in trainer:
    print(f"Epoch: {epoch}")
    print(epoch_stat)
    print(info)
    do_something_with_policy()
    query_something_about_policy()
    make_a_plot_with(epoch_stat)
    display(info)
```

- epoch int: the epoch number
- epoch_stat dict: a large collection of metrics of the current epoch, including stat
- info dict: the usual dict out of the non-generator version of the trainer

You can even iterate on several different trainers at the same time:

```python
trainer1 = OnPolicyTrainer(...)
trainer2 = OnPolicyTrainer(...)
for result1, result2, ... in zip(trainer1, trainer2, ...):
    compare_results(result1, result2, ...)
```

Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-03-18 00:26:14 +08:00
Anas BELFADIL
d976a5aa91
Fixed hardcoded reward_treshold (#548) 2022-03-04 10:35:39 +08:00
Chengqi Duan
23fbc3b712
upgrade gym version to >=0.21, fix related CI and update examples/atari (#534)
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-02-25 07:40:33 +08:00
Jiayi Weng
3d697aa4c6
make unit test faster (#522)
* test cache expert data in offline training

* faster cql test

* faster tests

* use dummy

* test ray dependency
2022-02-09 00:24:52 +08:00
Bernard Tan
bc53ead273
Implement CQLPolicy and offline_cql example (#506) 2022-01-16 05:30:21 +08:00