9 Commits

Author SHA1 Message Date
n+e
94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00
Trinkle23897
9b26137cd2 add type annotation 2020-05-12 11:31:47 +08:00
Trinkle23897
610390c132 add docs of collector and trainer (#20) 2020-04-05 18:34:45 +08:00
Trinkle23897
b6c9db6b0b docs for env 2020-04-04 21:02:06 +08:00
Trinkle23897
974ade8019 add some docs 2020-04-03 21:28:12 +08:00
Trinkle23897
44f911bc31 add pytorch drl result 2020-03-27 09:04:29 +08:00
Trinkle23897
519f9f20d0 update readme 2020-03-26 17:32:51 +08:00
Trinkle23897
fdc969b830 fix collector 2020-03-25 14:08:28 +08:00
Trinkle23897
75364cd986 ppo and early stop 2020-03-20 19:52:29 +08:00