48 Commits

Author SHA1 Message Date
Ayush Chaurasia
22d7bf38c8
Improve W&B logger (#441)
- rename WandBLogger -> WandbLogger
- add save_data and restore_data
- allow more input arguments for wandb init
- integrate wandb into test/modelbase/test_psrl.py and examples/atari/atari_dqn.py
- documentation update
2021-09-24 21:52:23 +08:00
n+e
fc251ab0b8
bump to v0.4.3 (#432)
* add makefile
* bump version
* add isort and yapf
* update contributing.md
* update PR template
* spelling check
2021-09-03 05:05:04 +08:00
Andriy Drozdyuk
8a5e2190f7
Add Weights and Biases Logger (#427)
- rename BasicLogger to TensorboardLogger
- refactor logger code
- add WandbLogger

Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2021-08-30 22:35:02 +08:00
Yi Su
291be08d43
Add Rainbow DQN (#386)
- add RainbowPolicy
- add `set_beta` method in prio_buffer
- add NoisyLinear in utils/network
2021-08-29 23:34:59 +08:00
n+e
ebaca6f8da
add vizdoom example, bump version to 0.4.2 (#384) 2021-06-26 18:08:41 +08:00
Yi Su
c0bc8e00ca
Add Fully-parameterized Quantile Function (#376) 2021-06-15 11:59:02 +08:00
Yi Su
f3169b4c1f
Add Implicit Quantile Network (#371) 2021-05-29 09:44:23 +08:00
Yi Su
b5c3ddabfa
Add discrete Conservative Q-Learning for offline RL (#359)
Co-authored-by: Yi Su <yi.su@antgroup.com>
Co-authored-by: Yi Su <yi.su@antfin.com>
2021-05-12 09:24:48 +08:00
Ark
84f58636eb
Make trainer resumable (#350)
- specify tensorboard >= 2.5.0
- add `save_checkpoint_fn` and `resume_from_log` in trainer

Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-05-06 08:53:53 +08:00
n+e
09692c84fe
fix numpy>=1.20 typing check (#323)
Change the behavior of to_numpy and to_torch: from now on, dict is automatically converted to Batch and list is automatically converted to np.ndarray (if an error occurs, raise the exception instead of converting each element in the list).
2021-03-30 16:06:03 +08:00
ChenDRAG
243ab43b3c
support observation normalization in BaseVectorEnv (#308)
add RunningMeanStd
2021-03-11 20:50:20 +08:00
ChenDRAG
f22b539761
Remove reward_normaliztion option in offpolicy algorithm (#298)
* remove rew_norm in nstep implementation
* improve test
* remove runnable/
* various doc fix

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-27 11:20:43 +08:00
ChenDRAG
3108b9db0d
Add Timelimit trick to optimize policies (#296)
* consider timelimit.truncated in calculating returns by default
* remove ignore_done
2021-02-26 13:23:18 +08:00
ChenDRAG
9b61bc620c add logger (#295)
This PR focus on refactor of logging method to solve bug of nan reward and log interval. After these two pr, hopefully fundamental change of tianshou/data is finished. We then can concentrate on building benchmarks of tianshou finally.

Things changed:

1. trainer now accepts logger (BasicLogger or LazyLogger) instead of writer;
2. remove utils.SummaryWriter;
2021-02-24 14:48:42 +08:00
ChenDRAG
f528131da1
hotfix:fix test failure in cuda environment (#289) 2021-02-09 17:13:40 +08:00
ChenDRAG
a633a6a028
update utils.network (#275)
This is the first commit of 6 commits mentioned in #274, which features

1. Refactor of `Class Net` to support any form of MLP.
2. Enable type check in utils.network.
3. Relative change in docs/test/examples.
4. Move atari-related network to examples/atari/atari_network.py

Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-01-20 16:54:13 +08:00
wizardsheng
c6f2648e87
Add C51 algorithm (#266)
This is the PR for C51algorithm: https://arxiv.org/abs/1707.06887

1. add C51 policy in tianshou/policy/modelfree/c51.py.
2. add C51 net in tianshou/utils/net/discrete.py.
3. add C51 atari example in examples/atari/atari_c51.py.
4. add C51 statement in tianshou/policy/__init__.py.
5. add C51 test in test/discrete/test_c51.py.
6. add C51 atari results in examples/atari/results/c51/.

By running "python3 atari_c51.py --task "PongNoFrameskip-v4" --batch-size 64", get  best_result': '20.50 ± 0.50', in epoch 9.

By running "python3 atari_c51.py --task "BreakoutNoFrameskip-v4" --n-step 1 --epoch 40", get best_reward: 407.400000 ± 31.155096 in epoch 39.
2021-01-06 10:17:45 +08:00
Trinkle23897
cd481423dc sac mujoco result (#246) 2020-11-09 16:43:55 +08:00
rocknamx
c97aa4065e
add singleton pattern version of summary_writter (#230)
Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2020-10-31 16:38:54 +08:00
rocknamx
bf39b9ef7d
clarify updating state (#224)
Add an indicator(i.e. `self.learning`) of learning will be convenient for distinguishing state of policy.
Meanwhile, the state of `self.training` will be undisputed in the training stage.
Related issue: #211 

Others:
- fix a bug in DDQN: target_q could not be sampled from np.random.rand
- fix a bug in DQN atari net: it should add a ReLU before the last layer
- fix a bug in collector timing

Co-authored-by: n+e <463003665@qq.com>
2020-09-22 16:28:46 +08:00
danagi
a6ee979609
implement sac for discrete action settings (#216)
Co-authored-by: n+e <trinkle23897@cmu.edu>
2020-09-14 14:59:23 +08:00
n+e
b284ace102
type check in unit test (#200)
Fix #195: Add mypy test in .github/workflows/docs_and_lint.yml.

Also remove the out-of-the-date api
2020-09-13 19:31:50 +08:00
n+e
c91def6cbc
code format and update function signatures (#213)
Cherry-pick from #200 

- update the function signature
- format code-style
- move _compile into separate functions
- fix a bug in to_torch and to_numpy (Batch)
- remove None in action_range

In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
2020-09-12 15:39:01 +08:00
n+e
b86d78766b
fix docs and add docstring check (#210)
- fix broken links and out-of-the-date content
- add pydocstyle and doc8 check
- remove collector.seed and collector.render
2020-09-11 07:55:37 +08:00
Trinkle23897
34f714a677 Numba acceleration (#193)
Training FPS improvement (base commit is 94bfb32):
test_pdqn: 1660 (without numba) -> 1930
discrete/test_ppo: 5100 -> 5170

since nstep has little impact on overall performance, the unit test result is:
GAE: 4.1s -> 0.057s
nstep: 0.3s -> 0.15s (little improvement)

Others:
- fix a bug in ttt set_eps
- keep only sumtree in segment tree implementation
- dirty fix for asyncVenv check_id test
2020-09-02 13:03:32 +08:00
n+e
94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00
youkaichao
32df0567bb
use nn.Sequential in DQN (#176) 2020-08-02 15:14:44 +08:00
yingchengyang
99a1d40e85
Dueling DQN (#170)
Co-authored-by: n+e <463003665@qq.com>
2020-07-29 19:44:42 +08:00
n+e
38a95c19da
Yet another 3 fix (#160)
1. DQN learn should keep eps=0

2. Add a warning of env.seed in VecEnv

3. fix #162 of multi-dim action
2020-07-24 17:38:12 +08:00
n+e
bd9c3c7f8d
docs fix and v0.2.5 (#156)
* pre

* update docs

* update docs

* $ in bash

* size -> hidden_layer_size

* doctest

* doctest again

* filter a warning

* fix bug

* fix examples

* test fail

* test succ
2020-07-22 14:42:08 +08:00
youkaichao
e767de044b
Remove dummy net code (#123)
* remove dummy net; delete two files

* split code to have backbone and head

* rename class

* change torch.float to torch.float32

* use flatten(1) instead of view(batch, -1)

* remove dummy net in docs

* bugfix for rnn

* fix cuda error

* minor fix of docs

* do not change the example code in dqn tutorial, since it is for demonstration

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-07-09 22:57:01 +08:00
Trinkle23897
ff81a18f42 compute_nstep_returns (item 2 of #51) 2020-06-02 22:29:50 +08:00
Trinkle23897
0eef0ca198 fix optional type syntax 2020-05-16 20:08:32 +08:00
Trinkle23897
9b26137cd2 add type annotation 2020-05-12 11:31:47 +08:00
Trinkle23897
8812eaa502 fix #36 2020-04-23 22:06:18 +08:00
Trinkle23897
6bf1ea644d fix ppo 2020-04-19 14:30:42 +08:00
Trinkle23897
e0809ff135 add policy docs (#21) 2020-04-06 19:36:59 +08:00
Trinkle23897
610390c132 add docs of collector and trainer (#20) 2020-04-05 18:34:45 +08:00
Trinkle23897
b6c9db6b0b docs for env 2020-04-04 21:02:06 +08:00
Trinkle23897
974ade8019 add some docs 2020-04-03 21:28:12 +08:00
Trinkle23897
75364cd986 ppo and early stop 2020-03-20 19:52:29 +08:00
Trinkle23897
39de63592f finish pg 2020-03-17 11:37:31 +08:00
Trinkle23897
5983c6b33d finish dqn 2020-03-15 17:41:00 +08:00
Trinkle23897
c804662457 add cache buf in collector 2020-03-14 21:48:31 +08:00
Trinkle23897
f58c1397c6 half of collector 2020-03-12 22:20:33 +08:00
Trinkle23897
7533e5b0ac add first test 2020-03-11 10:56:38 +08:00
Trinkle23897
5550aed0a1 flake8 fix 2020-03-11 09:38:14 +08:00
Trinkle23897
0dfb900e29 env and data 2020-03-11 09:09:56 +08:00