27 Commits

Author SHA1 Message Date
n+e
5ed6c1c7aa
change the step in trainer (#235)
This PR separates the `global_step` into `env_step` and `gradient_step`. In the future, the data from the collecting state will be stored under `env_step`, and the data from the updating state will be stored under `gradient_step`.

Others:
- add `rew_std` and `best_result` into the monitor
- fix network unbounded in `test/continuous/test_sac_with_il.py` and `examples/box2d/bipedal_hardcore_sac.py`
- change the dependency of ray to 1.0.0 since ray-project/ray#10134 has been resolved
2020-10-04 21:55:43 +08:00
n+e
710966eda7
change API of train_fn and test_fn (#229)
train_fn(epoch) -> train_fn(epoch, num_env_step)
test_fn(epoch) -> test_fn(epoch, num_env_step)
2020-09-26 16:35:37 +08:00
rocknamx
bf39b9ef7d
clarify updating state (#224)
Add an indicator(i.e. `self.learning`) of learning will be convenient for distinguishing state of policy.
Meanwhile, the state of `self.training` will be undisputed in the training stage.
Related issue: #211 

Others:
- fix a bug in DDQN: target_q could not be sampled from np.random.rand
- fix a bug in DQN atari net: it should add a ReLU before the last layer
- fix a bug in collector timing

Co-authored-by: n+e <463003665@qq.com>
2020-09-22 16:28:46 +08:00
n+e
b284ace102
type check in unit test (#200)
Fix #195: Add mypy test in .github/workflows/docs_and_lint.yml.

Also remove the out-of-the-date api
2020-09-13 19:31:50 +08:00
n+e
c91def6cbc
code format and update function signatures (#213)
Cherry-pick from #200 

- update the function signature
- format code-style
- move _compile into separate functions
- fix a bug in to_torch and to_numpy (Batch)
- remove None in action_range

In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
2020-09-12 15:39:01 +08:00
danagi
16d8e9b051
SAC implementation update (#212)
- replace DiagGuassian with Independent(Normal) (pytorch has already supported this)
- detach alpha from autograd
- add value/alpha to result (more informational)
- revert #204 to fix #211

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-09-12 08:44:50 +08:00
n+e
b86d78766b
fix docs and add docstring check (#210)
- fix broken links and out-of-the-date content
- add pydocstyle and doc8 check
- remove collector.seed and collector.render
2020-09-11 07:55:37 +08:00
n+e
8bb8ecba6e
set policy.eval() before collector.collect (#204)
* fix #203

* no_grad argument in collector.collect
2020-09-06 16:20:16 +08:00
n+e
94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00
youkaichao
7f3b817b24
add policy.update to enable post process and remove collector.sample (#180)
* add policy.update to enable post process and remove collector.sample

* update doc in policy concept

* remove collector.sample in doc

* doc update of concepts

* docs

* polish

* polish policy

* remove collector.sample in docs

* minor fix

* Apply suggestions from code review

just a test

* doc fix

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-08-15 16:10:42 +08:00
Trinkle23897
b7a4015db7 doc update and do not force save 'policy' in np format (#168) 2020-07-27 16:54:14 +08:00
youkaichao
bfeffe1f97
unify single-env and multi-env in collector (#157)
Unify the implementation with multi-environments (wrap a single environment in a multi-environment with one envs) to greatly simplify the code.

This changed the behavior of single-environment.
Prior to this pr, for single environment, collector.collect(n_step=n) will step n steps.
After this pr, for single environment, collector.collect(n_step=n) will step m episodes until the steps are greater than n.

That is to say, collectors now always collect full episodes.
2020-07-23 16:40:53 +08:00
youkaichao
8c32d99c65
Add multi-agent example: tic-tac-toe (#122)
* make fileds with empty Batch rather than None after reset

* dummy code

* remove dummy

* add reward_length argument for collector

* Improve Batch (#126)

* make sure the key type of Batch is string, and add unit tests

* add is_empty() function and unit tests

* enable cat of mixing dict and Batch, just like stack

* bugfix for reward_length

* add get_final_reward_fn argument to collector to deal with marl

* minor polish

* remove multibuf

* minor polish

* improve and implement Batch.cat_

* bugfix for buffer.sample with field impt_weight

* restore the usage of a.cat_(b)

* fix 2 bugs in batch and add corresponding unittest

* code fix for update

* update is_empty to recognize empty over empty; bugfix for len

* bugfix for update and add testcase

* add testcase of update

* make fileds with empty Batch rather than None after reset

* dummy code

* remove dummy

* add reward_length argument for collector

* bugfix for reward_length

* add get_final_reward_fn argument to collector to deal with marl

* make sure the key type of Batch is string, and add unit tests

* add is_empty() function and unit tests

* enable cat of mixing dict and Batch, just like stack

* dummy code

* remove dummy

* add multi-agent example: tic-tac-toe

* move TicTacToeEnv to a separate file

* remove dummy MANet

* code refactor

* move tic-tac-toe example to test

* update doc with marl-example

* fix docs

* reduce the threshold

* revert

* update player id to start from 1 and change player to agent; keep coding

* add reward_length argument for collector

* Improve Batch (#128)

* minor polish

* improve and implement Batch.cat_

* bugfix for buffer.sample with field impt_weight

* restore the usage of a.cat_(b)

* fix 2 bugs in batch and add corresponding unittest

* code fix for update

* update is_empty to recognize empty over empty; bugfix for len

* bugfix for update and add testcase

* add testcase of update

* fix docs

* fix docs

* fix docs [ci skip]

* fix docs [ci skip]

Co-authored-by: Trinkle23897 <463003665@qq.com>

* refact

* re-implement Batch.stack and add testcases

* add doc for Batch.stack

* reward_metric

* modify flag

* minor fix

* reuse _create_values and refactor stack_ & cat_

* fix pep8

* fix reward stat in collector

* fix stat of collector, simplify test/base/env.py

* fix docs

* minor fix

* raise exception for stacking with partial keys and axis!=0

* minor fix

* minor fix

* minor fix

* marl-examples

* add condense; bugfix for torch.Tensor; code refactor

* marl example can run now

* enable tic tac toe with larger board size and win-size

* add test dependency

* Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130)

* re-implement Batch.stack and add testcases

* add doc for Batch.stack

* reuse _create_values and refactor stack_ & cat_

* fix pep8

* fix docs

* raise exception for stacking with partial keys and axis!=0

* minor fix

* minor fix

Co-authored-by: Trinkle23897 <463003665@qq.com>

* stash

* let agent learn to play as agent 2 which is harder

* code refactor

* Improve collector (#125)

* remove multibuf

* reward_metric

* make fileds with empty Batch rather than None after reset

* many fixes and refactor
Co-authored-by: Trinkle23897 <463003665@qq.com>

* marl for tic-tac-toe and general gomoku

* update default gamma to 0.1 for tic tac toe to win earlier

* fix name typo; change default game config; add rew_norm option

* fix pep8

* test commit

* mv test dir name

* add rew flag

* fix torch.optim import error and madqn rew_norm

* remove useless kwargs

* Vector env enable select worker (#132)

* Enable selecting worker for vector env step method.

* Update collector to match new vecenv selective worker behavior.

* Bug fix.

* Fix rebase

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>

* show the last move of tictactoe by capital letters

* add multi-agent tutorial

* fix link

* Standardized behavior of Batch.cat and misc code refactor (#137)

* code refactor; remove unused kwargs; add reward_normalization for dqn

* bugfix for __setitem__ with torch.Tensor; add Batch.condense

* minor fix

* support cat with empty Batch

* remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases

* support stack with empty Batch

* remove condense

* refactor code to reflect the shared / partial / reserved categories of keys

* add is_empty(recursive=False)

* doc fix

* docfix and bugfix for _is_batch_set

* add doc for key reservation

* bugfix for algebra operators

* fix cat with lens hint

* code refactor

* bugfix for storing None

* use ValueError instead of exception

* hide lens away from users

* add comment for __cat

* move the computation of the initial value of lens in cat_ itself.

* change the place of doc string

* doc fix for Batch doc string

* change recursive to recurse

* doc string fix

* minor fix for batch doc

* write tutorials to specify the standard of Batch (#142)

* add doc for len exceptions

* doc move; unify is_scalar_value function

* remove some issubclass check

* bugfix for shape of Batch(a=1)

* keep moving doc

* keep writing batch tutorial

* draft version of Batch tutorial done

* improving doc

* keep improving doc

* batch tutorial done

* rename _is_number

* rename _is_scalar

* shape property do not raise exception

* restore some doc string

* grammarly [ci skip]

* grammarly + fix warning of building docs

* polish docs

* trim and re-arrange batch tutorial

* go straight to the point

* minor fix for batch doc

* add shape / len in basic usage

* keep improving tutorial

* unify _to_array_with_correct_type to remove duplicate code

* delegate type convertion to Batch.__init__

* further delegate type convertion to Batch.__init__

* bugfix for setattr

* add a _parse_value function

* remove dummy function call

* polish docs

Co-authored-by: Trinkle23897 <463003665@qq.com>

* bugfix for mapolicy

* pretty code

* remove debug code; remove condense

* doc fix

* check before get_agents in tutorials/tictactoe

* tutorial

* fix

* minor fix for batch doc

* minor polish

* faster test_ttt

* improve tic-tac-toe environment

* change default epoch and step-per-epoch for tic-tac-toe

* fix mapolicy

* minor polish for mapolicy

* 90% to 80% (need to change the tutorial)

* win rate

* show step number at board

* simplify mapolicy

* minor polish for mapolicy

* remove MADQN

* fix pep8

* change legal_actions to mask (need to update docs)

* simplify maenv

* fix typo

* move basevecenv to single file

* separate RandomAgent

* update docs

* grammarly

* fix pep8

* win rate typo

* format in cheatsheet

* use bool mask directly

* update doc for boolean mask

Co-authored-by: Trinkle23897 <463003665@qq.com>
Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com>
Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00
youkaichao
3a08e27ed4 Standardized behavior of Batch.cat and misc code refactor (#137)
* code refactor; remove unused kwargs; add reward_normalization for dqn

* bugfix for __setitem__ with torch.Tensor; add Batch.condense

* minor fix

* support cat with empty Batch

* remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases

* support stack with empty Batch

* remove condense

* refactor code to reflect the shared / partial / reserved categories of keys

* add is_empty(recursive=False)

* doc fix

* docfix and bugfix for _is_batch_set

* add doc for key reservation

* bugfix for algebra operators

* fix cat with lens hint

* code refactor

* bugfix for storing None

* use ValueError instead of exception

* hide lens away from users

* add comment for __cat

* move the computation of the initial value of lens in cat_ itself.

* change the place of doc string

* doc fix for Batch doc string

* change recursive to recurse

* doc string fix

* minor fix for batch doc
2020-07-20 15:54:18 +08:00
Trinkle23897
0eef0ca198 fix optional type syntax 2020-05-16 20:08:32 +08:00
Trinkle23897
9b26137cd2 add type annotation 2020-05-12 11:31:47 +08:00
Trinkle23897
075825325e add preprocess_fn (#42) 2020-05-05 13:39:51 +08:00
Trinkle23897
7b65d43394 vanilla imitation learning 2020-04-13 19:37:27 +08:00
Trinkle23897
6a244d1fbb save_fn 2020-04-11 16:54:27 +08:00
Trinkle23897
74407e13da env info log_fn (#28) 2020-04-10 18:02:05 +08:00
Trinkle23897
86572c66d4 maybe finished rnn? 2020-04-08 21:13:15 +08:00
Trinkle23897
e0809ff135 add policy docs (#21) 2020-04-06 19:36:59 +08:00
Trinkle23897
610390c132 add docs of collector and trainer (#20) 2020-04-05 18:34:45 +08:00
Oblivion
9380368ca3
add an example of bullet env (experiment from jiqizhixin) (#15)
* add_pybullet_ens_test

test on pybullet envs
modify some log config

* delete DS_Store file

* add pybullet_envs test

add HalfCheetahBulletEnv-v0 test
modify log config

* fix pep 8 errors

* add pybullet to dev

* delete a line

* by pass F401

* add log_interval to onpolicy_trainer

* add comments

* Update halfcheetahBullet_v0_sac.py
2020-04-04 11:46:18 +08:00
Trinkle23897
c42990c725 add rllib result and fix pep8 2020-03-28 09:43:35 +08:00
Minghao Zhang
77068af526
add examples, fix some bugs (#5)
* update atari.py

* fix setup.py
pass the pytest

* fix setup.py
pass the pytest

* add args "render"

* change the tensorboard writter

* change the tensorboard writter

* change device, render, tensorboard log location

* change device, render, tensorboard log location

* remove some wrong local files

* fix some tab mistakes and the envs name in continuous/test_xx.py

* add examples and point robot maze environment

* fix some bugs during testing examples

* add dqn network and fix some args

* change back the tensorboard writter's frequency to ensure ppo and a2c can write things normally

* add a warning to collector

* rm some unrelated files

* reformat

* fix a bug in test_dqn due to the model wrong selection
2020-03-28 07:27:18 +08:00
Trinkle23897
75364cd986 ppo and early stop 2020-03-20 19:52:29 +08:00