22 Commits

Author SHA1 Message Date
Juno T
d42a5fb354
Hindsight Experience Replay as a replay buffer (#753)
## implementation
I implemented HER solely as a replay buffer. It is done by temporarily
directly re-writing transitions storage (`self._meta`) during the
`sample_indices()` call. The original transitions are cached and will be
restored at the beginning of the next sampling or when other methods is
called. This will make sure that. for example, n-step return calculation
can be done without altering the policy.

There is also a problem with the original indices sampling. The sampled
indices are not guaranteed to be from different episodes. So I decided
to perform re-writing based on the episode. This guarantees that the
sampled transitions from the same episode will have the same re-written
goal. This also make the re-writing ratio calculation slightly differ
from the paper, but it won't be too different if there are many episodes
in the buffer.

In the current commit, HER replay buffer only support 'future' strategy
and online sampling. This is the best of HER in term of performance and
memory efficiency.

I also add a few more convenient replay buffers
(`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env
(`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a
simple example (examples/offline/fetch_her_ddpg.py).

## verification
I have added unit tests for almost everything I have implemented.
HER replay buffer was also tested using DDPG on [`FetchReach-v3`
env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used
default DDPG parameters from mujoco example and didn't tune anything
further to get this good result! (train script:
examples/offline/fetch_her_ddpg.py).


![Screen Shot 2022-10-02 at 19 22
53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-30 16:54:54 -07:00
Yi Su
df35718992
Implement TD3+BC for offline RL (#660)
- implement TD3+BC for offline RL;
- fix a bug in trainer about test reward not logged because self.env_step is not set for offline setting;
2022-06-07 00:39:37 +08:00
Anas BELFADIL
53e6b0408d
Add BranchingDQN for large discrete action spaces (#618) 2022-05-15 21:40:32 +08:00
Jiayi Weng
bf8f63ffc3
use envpool in vizdoom example, update doc (#634) 2022-05-09 00:42:16 +08:00
Yi Su
dd16818ce4
implement REDQ based on original contribution by @Jimenius (#623)
Co-authored-by: Minhui Li
 <limh@lamda.nju.edu.cn>
2022-05-01 00:06:00 +08:00
Jose Antonio Martin H
10d919052b
Add Trainers as generators (#559)
The new proposed feature is to have trainers as generators.
The usage pattern is:

```python
trainer = OnPolicyTrainer(...)
for epoch, epoch_stat, info in trainer:
    print(f"Epoch: {epoch}")
    print(epoch_stat)
    print(info)
    do_something_with_policy()
    query_something_about_policy()
    make_a_plot_with(epoch_stat)
    display(info)
```

- epoch int: the epoch number
- epoch_stat dict: a large collection of metrics of the current epoch, including stat
- info dict: the usual dict out of the non-generator version of the trainer

You can even iterate on several different trainers at the same time:

```python
trainer1 = OnPolicyTrainer(...)
trainer2 = OnPolicyTrainer(...)
for result1, result2, ... in zip(trainer1, trainer2, ...):
    compare_results(result1, result2, ...)
```

Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-03-18 00:26:14 +08:00
Yi Su
2377f2f186
Implement Generative Adversarial Imitation Learning (GAIL) (#550)
Implement GAIL based on PPO and provide example script and sample (i.e., most likely not the best) results with Mujoco tasks. (#531, #173)
2022-03-06 23:57:15 +08:00
Bernard Tan
bc53ead273
Implement CQLPolicy and offline_cql example (#506) 2022-01-16 05:30:21 +08:00
Yi Su
a59d96d041
Add Intrinsic Curiosity Module (#503) 2022-01-15 02:43:48 +08:00
Bernard Tan
5c5a3db94e
Implement BCQPolicy and offline_bcq example (#480)
This PR implements BCQPolicy, which could be used to train an offline agent in the environment of continuous action space. An experimental result 'halfcheetah-expert-v1' is provided, which is a d4rl environment (for Offline Reinforcement Learning).
Example usage is in the examples/offline/offline_bcq.py.
2021-11-22 22:21:02 +08:00
Yi Su
291be08d43
Add Rainbow DQN (#386)
- add RainbowPolicy
- add `set_beta` method in prio_buffer
- add NoisyLinear in utils/network
2021-08-29 23:34:59 +08:00
Yi Su
c0bc8e00ca
Add Fully-parameterized Quantile Function (#376) 2021-06-15 11:59:02 +08:00
Yi Su
f3169b4c1f
Add Implicit Quantile Network (#371) 2021-05-29 09:44:23 +08:00
Yi Su
8f7bc65ac7
Add discrete Critic Regularized Regression (#367) 2021-05-19 13:29:56 +08:00
Yi Su
b5c3ddabfa
Add discrete Conservative Q-Learning for offline RL (#359)
Co-authored-by: Yi Su <yi.su@antgroup.com>
Co-authored-by: Yi Su <yi.su@antfin.com>
2021-05-12 09:24:48 +08:00
ChenDRAG
1dcf65fe21
Add NPG policy (#344) 2021-04-21 09:52:15 +08:00
ChenDRAG
5057b5c89e
Add TRPO policy (#337) 2021-04-16 20:37:12 +08:00
n+e
454c86c469
fix venv seed, add TOC in docs, and split buffer.py into several files (#303)
Things changed in this PR:

- various docs update, add TOC
- split buffer into several files
- fix venv action_space randomness
2021-03-02 12:28:28 +08:00
ChenDRAG
150d0ec51b
Step collector implementation (#280)
This is the third PR of 6 commits mentioned in #274, which features refactor of Collector to fix #245. You can check #274 for more detail.

Things changed in this PR:

1. refactor collector to be more cleaner, split AsyncCollector to support asyncvenv;
2. change buffer.add api to add(batch, bffer_ids); add several types of buffer (VectorReplayBuffer, PrioritizedVectorReplayBuffer, etc.)
3. add policy.exploration_noise(act, batch) -> act
4. small change in BasePolicy.compute_*_returns
5. move reward_metric from collector to trainer
6. fix np.asanyarray issue (different version's numpy will result in different output)
7. flake8 maxlength=88
8. polish docs and fix test

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-19 10:33:49 +08:00
youkaichao
a9f9940d17
code refactor for venv (#179)
- Refacor code to remove duplicate code

- Enable async simulation for all vector envs

- Remove `collector.close` and rename `VectorEnv` to `DummyVectorEnv`

The abstraction of vector env changed.

Prior to this pr, each vector env is almost independent.

After this pr, each env is wrapped into a worker, and vector envs differ with their worker type. In fact, users can just use `BaseVectorEnv` with different workers, I keep `SubprocVectorEnv`, `ShmemVectorEnv` for backward compatibility.

Co-authored-by: n+e <463003665@qq.com>
Co-authored-by: magicly <magicly007@gmail.com>
2020-08-19 15:00:24 +08:00
youkaichao
e767de044b
Remove dummy net code (#123)
* remove dummy net; delete two files

* split code to have backbone and head

* rename class

* change torch.float to torch.float32

* use flatten(1) instead of view(batch, -1)

* remove dummy net in docs

* bugfix for rnn

* fix cuda error

* minor fix of docs

* do not change the example code in dqn tutorial, since it is for demonstration

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-07-09 22:57:01 +08:00
Trinkle23897
0acd0d164c test api doc 2020-04-02 09:07:04 +08:00