13 Commits

Author SHA1 Message Date
n+e
5ed6c1c7aa
change the step in trainer (#235)
This PR separates the `global_step` into `env_step` and `gradient_step`. In the future, the data from the collecting state will be stored under `env_step`, and the data from the updating state will be stored under `gradient_step`.

Others:
- add `rew_std` and `best_result` into the monitor
- fix network unbounded in `test/continuous/test_sac_with_il.py` and `examples/box2d/bipedal_hardcore_sac.py`
- change the dependency of ray to 1.0.0 since ray-project/ray#10134 has been resolved
2020-10-04 21:55:43 +08:00
n+e
710966eda7
change API of train_fn and test_fn (#229)
train_fn(epoch) -> train_fn(epoch, num_env_step)
test_fn(epoch) -> test_fn(epoch, num_env_step)
2020-09-26 16:35:37 +08:00
n+e
b284ace102
type check in unit test (#200)
Fix #195: Add mypy test in .github/workflows/docs_and_lint.yml.

Also remove the out-of-the-date api
2020-09-13 19:31:50 +08:00
n+e
c91def6cbc
code format and update function signatures (#213)
Cherry-pick from #200 

- update the function signature
- format code-style
- move _compile into separate functions
- fix a bug in to_torch and to_numpy (Batch)
- remove None in action_range

In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
2020-09-12 15:39:01 +08:00
n+e
94bfb32cc1
optimize training procedure and improve code coverage (#189)
1. add policy.eval() in all test scripts' "watch performance"
2. remove dict return support for collector preprocess_fn
3. add `__contains__` and `pop` in batch: `key in batch`, `batch.pop(key, deft)`
4. exact n_episode for a list of n_episode limitation and save fake data in cache_buffer when self.buffer is None (#184)
5. fix tensorboard logging: h-axis stands for env step instead of gradient step; add test results into tensorboard
6. add test_returns (both GAE and nstep)
7. change the type-checking order in batch.py and converter.py in order to meet the most often case first
8. fix shape inconsistency for torch.Tensor in replay buffer
9. remove `**kwargs` in ReplayBuffer
10. remove default value in batch.split() and add merge_last argument (#185)
11. improve nstep efficiency
12. add max_batchsize in onpolicy algorithms
13. potential bugfix for subproc.wait
14. fix RecurrentActorProb
15. improve the code-coverage (from 90% to 95%) and remove the dead code
16. fix some incorrect type annotation

The above improvement also increases the training FPS: on my computer, the previous version is only ~1800 FPS and after that, it can reach ~2050 (faster than v0.2.4.post1).
2020-08-27 12:15:18 +08:00
Trinkle23897
9b26137cd2 add type annotation 2020-05-12 11:31:47 +08:00
Trinkle23897
610390c132 add docs of collector and trainer (#20) 2020-04-05 18:34:45 +08:00
Trinkle23897
b6c9db6b0b docs for env 2020-04-04 21:02:06 +08:00
Trinkle23897
974ade8019 add some docs 2020-04-03 21:28:12 +08:00
Trinkle23897
44f911bc31 add pytorch drl result 2020-03-27 09:04:29 +08:00
Trinkle23897
519f9f20d0 update readme 2020-03-26 17:32:51 +08:00
Trinkle23897
fdc969b830 fix collector 2020-03-25 14:08:28 +08:00
Trinkle23897
75364cd986 ppo and early stop 2020-03-20 19:52:29 +08:00