This is the third PR of 6 commits mentioned in #274, which features refactor of Collector to fix#245. You can check #274 for more detail.
Things changed in this PR:
1. refactor collector to be more cleaner, split AsyncCollector to support asyncvenv;
2. change buffer.add api to add(batch, bffer_ids); add several types of buffer (VectorReplayBuffer, PrioritizedVectorReplayBuffer, etc.)
3. add policy.exploration_noise(act, batch) -> act
4. small change in BasePolicy.compute_*_returns
5. move reward_metric from collector to trainer
6. fix np.asanyarray issue (different version's numpy will result in different output)
7. flake8 maxlength=88
8. polish docs and fix test
Co-authored-by: n+e <trinkle23897@gmail.com>
This is the second commit of 6 commits mentioned in #274, which features minor refactor of ReplayBuffer and adding two new ReplayBuffer classes called CachedReplayBuffer and ReplayBufferManager. You can check #274 for more detail.
1. Add ReplayBufferManager (handle a list of buffers) and CachedReplayBuffer;
2. Make sure the reserved keys cannot be edited by methods like `buffer.done = xxx`;
3. Add `set_batch` method for manually choosing the batch the ReplayBuffer wants to handle;
4. Add `sample_index` method, same as `sample` but only return index instead of both index and batch data;
5. Add `prev` (one-step previous transition index), `next` (one-step next transition index) and `unfinished_index` (the last modified index whose done==False);
6. Separate `alloc_fn` method for allocating new memory for `self._meta` when a new `(key, value)` pair comes in;
7. Move buffer's documentation to `docs/tutorials/concepts.rst`.
Co-authored-by: n+e <trinkle23897@gmail.com>
Cherry-pick from #200
- update the function signature
- format code-style
- move _compile into separate functions
- fix a bug in to_torch and to_numpy (Batch)
- remove None in action_range
In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
* Enable to convert Batch data back to torch.
* Add torch converter to collector.
* Fix
* Move to_numpy/to_torch convert in dedicated utils.py.
* Use to_numpy/to_torch to convert arrays.
* fix lint
* fix
* Add unit test to check Batch from/to numpy.
* Fix Batch over Batch.
Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>