7 Commits

Author SHA1 Message Date
Yi Su
06aaad460e
Fix a bug in loading offline data (#768)
This PR fixes #766 .

Co-authored-by: Yi Su <yi_su@apple.com>
2022-11-03 16:12:33 -07:00
Yi Su
df35718992
Implement TD3+BC for offline RL (#660)
- implement TD3+BC for offline RL;
- fix a bug in trainer about test reward not logged because self.env_step is not set for offline setting;
2022-06-07 00:39:37 +08:00
Yi Su
41afc2584a
Convert RL Unplugged Atari datasets to tianshou ReplayBuffer (#621) 2022-04-29 19:33:28 +08:00
Yi Su
9cb74e60c9
Add imitation baselines for offline RL (#566)
add imitation baselines for offline RL; make the choice of env/task and D4RL dataset explicit; on expert datasets, IL easily outperforms; after reading the D4RL paper, I'll rerun the exps on medium data
2022-03-12 21:33:54 +08:00
Bernard Tan
bc53ead273
Implement CQLPolicy and offline_cql example (#506) 2022-01-16 05:30:21 +08:00
Yi Su
3592f45446
Fix critic network for Discrete CRR (#485)
- Fixes an inconsistency in the implementation of Discrete CRR. Now it uses `Critic` class for its critic, following conventions in other actor-critic policies;
- Updates several offline policies to use `ActorCritic` class for its optimizer to eliminate randomness caused by parameter sharing between actor and critic;
- Add `writer.flush()` in TensorboardLogger to ensure real-time result;
- Enable `test_collector=None` in 3 trainers to turn off testing during training;
- Updates the Atari offline results in README.md;
- Moves Atari offline RL examples to `examples/offline`; tests to `test/offline` per review comments.
2021-11-28 23:10:28 +08:00
Bernard Tan
5c5a3db94e
Implement BCQPolicy and offline_bcq example (#480)
This PR implements BCQPolicy, which could be used to train an offline agent in the environment of continuous action space. An experimental result 'halfcheetah-expert-v1' is provided, which is a d4rl environment (for Offline Reinforcement Learning).
Example usage is in the examples/offline/offline_bcq.py.
2021-11-22 22:21:02 +08:00