153 Commits

Author SHA1 Message Date
Markus Krimmel
ea36dc5195
Changes to support Gym 0.26.0 (#748)
* Changes to support Gym 0.26.0

* Replace map by simpler list comprehension

* Use syntax that is compatible with python 3.7

* Format code

* Fix environment seeding in test environment, fix buffer_profile test

* Remove self.seed() from __init__

* Fix random number generation

* Fix throughput tests

* Fix tests

* Removed done field from Buffer, fixed throughput test, turned off wandb, fixed formatting, fixed type hints, allow preprocessing_fn with truncated and terminated arguments, updated docstrings

* fix lint

* fix

* fix import

* fix

* fix mypy

* pytest --ignore='test/3rd_party'

* Use correct step API in _SetAttrWrapper

* Format

* Fix mypy

* Format

* Fix pydocstyle.
2022-09-26 09:31:23 -07:00
Jiayi Weng
0f59e38b12
Fix venv wrapper reset retval error with gym env (#712)
* Fix venv wrapper reset retval error with gym env

* fix lint
2022-07-31 11:00:38 -07:00
Jiayi Weng
99c99bb09a
Fix 2 bugs and refactor RunningMeanStd to support dict obs norm (#695)
* fix #689

* fix #672

* refactor RMS class

* fix #688
2022-07-14 22:52:56 -07:00
Yifei Cheng
43792bf5ab
Upgrade gym (#613)
fixes some deprecation warnings due to new changes in gym version 0.23:
- use `env.np_random.integers` instead of `env.np_random.randint`
- support `seed` and `return_info` arguments for reset (addresses https://github.com/thu-ml/tianshou/issues/605)
2022-06-28 06:52:21 +08:00
Jiayi Weng
109875d43d
Fix num_envs=test_num (#653)
* fix num_envs=test_num

* fix mypy
2022-05-30 12:38:47 +08:00
Anas BELFADIL
53e6b0408d
Add BranchingDQN for large discrete action spaces (#618) 2022-05-15 21:40:32 +08:00
Yi Su
a7c789f851
Improve data loading from D4RL and convert RL Unplugged to D4RL format (#624) 2022-05-04 04:37:52 +08:00
Yi Su
41afc2584a
Convert RL Unplugged Atari datasets to tianshou ReplayBuffer (#621) 2022-04-29 19:33:28 +08:00
Andrea Boscolo Camiletto
2336a7db1b
fixed typo in rainbow DQN paper reference (#569)
* fixed typo in rainbow DQN paper ref

* fix gym==0.23 ci failure

Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-03-16 21:38:51 +08:00
Minhui Li
39f8391cfb
Add map_action_inverse for fixing error of storing random action (#568)
(Issue #512) Random start in Collector sample actions from the action space, while policies output action in a range (typically [-1, 1]) and map action to the action space. The buffer only stores unmapped actions, so the actions randomly initialized are not correct when the action range is not [-1, 1]. This may influence policy learning and particularly model learning in model-based methods.

This PR fixes it by adding an inverse operation before adding random initial actions to the buffer.
2022-03-12 22:26:00 +08:00
Alex Nikulkov
74f430ea36
Add a comment before SAC alpha loss (#565)
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-03-09 06:38:42 +08:00
Chengqi Duan
23fbc3b712
upgrade gym version to >=0.21, fix related CI and update examples/atari (#534)
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-02-25 07:40:33 +08:00
Chengqi Duan
d85bc19269
update dqn tutorial and add envpool to docs (#526)
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-02-15 06:39:47 +08:00
ChenDRAG
c25926dd8f
Formalize variable names (#509)
Co-authored-by: Jiayi Weng <trinkle23897@gmail.com>
2022-01-30 00:53:56 +08:00
Markus28
a2d76d1276
Remove reset_buffer() from reset method (#501) 2022-01-12 16:46:28 -08:00
Jiayi Weng
926ec0b9b1
update save_fn in trainer (#459)
- collector.collect() now returns 4 extra keys: rew/rew_std/len/len_std (previously this work is done in logger)
- save_fn() will be called at the beginning of trainer
2021-10-13 21:25:24 +08:00
Jiayi Weng
5df64800f4
final fix for actor_critic shared head parameters (#458) 2021-10-04 23:19:07 +08:00
n+e
fc251ab0b8
bump to v0.4.3 (#432)
* add makefile
* bump version
* add isort and yapf
* update contributing.md
* update PR template
* spelling check
2021-09-03 05:05:04 +08:00
Yi Su
291be08d43
Add Rainbow DQN (#386)
- add RainbowPolicy
- add `set_beta` method in prio_buffer
- add NoisyLinear in utils/network
2021-08-29 23:34:59 +08:00
Andriy Drozdyuk
d161059c3d
Replaced indice by plural indices (#422) 2021-08-20 21:58:44 +08:00
n+e
c19876179a
add env_id in preprocess fn (#391) 2021-07-05 09:50:39 +08:00
n+e
ebaca6f8da
add vizdoom example, bump version to 0.4.2 (#384) 2021-06-26 18:08:41 +08:00
n+e
ff4d3cd714
Support different state size and fix exception in venv.__del__ (#352)
- Batch: do not raise error when it finds list of np.array with different shape[0].

- Venv's obs: add try...except block for np.stack(obs_list)

- remove venv.__del__ since it is buggy
2021-04-25 15:23:46 +08:00
ChenDRAG
5057b5c89e
Add TRPO policy (#337) 2021-04-16 20:37:12 +08:00
n+e
09692c84fe
fix numpy>=1.20 typing check (#323)
Change the behavior of to_numpy and to_torch: from now on, dict is automatically converted to Batch and list is automatically converted to np.ndarray (if an error occurs, raise the exception instead of converting each element in the list).
2021-03-30 16:06:03 +08:00
ChenDRAG
105b277b87
hotfix:keep statisics of buffer when reset buffer in on policy trainer (#328) 2021-03-27 16:58:48 +08:00
ChenDRAG
4d92952a7b
Remap action to fit gym's action space (#313)
Co-authored-by: Trinkle23897 <trinkle23897@gmail.com>
2021-03-21 16:45:50 +08:00
n+e
454c86c469
fix venv seed, add TOC in docs, and split buffer.py into several files (#303)
Things changed in this PR:

- various docs update, add TOC
- split buffer into several files
- fix venv action_space randomness
2021-03-02 12:28:28 +08:00
n+e
31e7f445d1
fix vecenv action_space randomness (#300) 2021-03-01 15:44:03 +08:00
ChenDRAG
f22b539761
Remove reward_normaliztion option in offpolicy algorithm (#298)
* remove rew_norm in nstep implementation
* improve test
* remove runnable/
* various doc fix

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-27 11:20:43 +08:00
ChenDRAG
9b61bc620c add logger (#295)
This PR focus on refactor of logging method to solve bug of nan reward and log interval. After these two pr, hopefully fundamental change of tianshou/data is finished. We then can concentrate on building benchmarks of tianshou finally.

Things changed:

1. trainer now accepts logger (BasicLogger or LazyLogger) instead of writer;
2. remove utils.SummaryWriter;
2021-02-24 14:48:42 +08:00
Trinkle23897
e99e1b0fdd Improve buffer.prev() & buffer.next() (#294) 2021-02-22 19:19:22 +08:00
ChenDRAG
7036073649
Trainer refactor : some definition change (#293)
This PR focus on some definition change of trainer to make it more friendly to use and be consistent with typical usage in research papers, typically change `collect-per-step` to `step-per-collect`, add `update-per-step` / `episode-per-collect` accordingly, and modify the documentation.
2021-02-21 13:06:02 +08:00
ChenDRAG
150d0ec51b
Step collector implementation (#280)
This is the third PR of 6 commits mentioned in #274, which features refactor of Collector to fix #245. You can check #274 for more detail.

Things changed in this PR:

1. refactor collector to be more cleaner, split AsyncCollector to support asyncvenv;
2. change buffer.add api to add(batch, bffer_ids); add several types of buffer (VectorReplayBuffer, PrioritizedVectorReplayBuffer, etc.)
3. add policy.exploration_noise(act, batch) -> act
4. small change in BasePolicy.compute_*_returns
5. move reward_metric from collector to trainer
6. fix np.asanyarray issue (different version's numpy will result in different output)
7. flake8 maxlength=88
8. polish docs and fix test

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-02-19 10:33:49 +08:00
Trinkle23897
d918022ce9 merge master into dev 2021-02-18 12:46:55 +08:00
n+e
cb65b56b13
v0.3.2 (#292)
Throw a warning in ListReplayBuffer.

This version update is needed because of #289, the previous v0.3.1 cannot work well under torch<=1.6.0 with cuda environment.
2021-02-16 09:31:46 +08:00
n+e
d003c8e566
fix 2 bugs of batch (#284)
1. `_create_value(Batch(a={}, b=[1, 2, 3]), 10, False)`

before:
```python
TypeError: cannot concatenate with Batch() which is scalar
```
after:
```python
Batch(
    a: Batch(),
    b: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
)
```

2. creating keys in a batch's subkey, e.g. 
```python
a = Batch(info={"key1": [0, 1], "key2": [2, 3]})
a[0] = Batch(info={"key1": 2, "key3": 4})
print(a)
```
before:
```python
Batch(
    info: Batch(
              key1: array([0, 1]),
              key2: array([0, 3]),
          ),
)
```
after:
```python
ValueError: Creating keys is not supported by item assignment.
```

3. small optimization for `Batch.stack_` and `Batch.cat_`
2021-02-16 09:01:54 +08:00
n+e
c838f2f0e9
fix 2 bugs of batch (#284)
1. `_create_value(Batch(a={}, b=[1, 2, 3]), 10, False)`

before:
```python
TypeError: cannot concatenate with Batch() which is scalar
```
after:
```python
Batch(
    a: Batch(),
    b: array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]),
)
```

2. creating keys in a batch's subkey, e.g. 
```python
a = Batch(info={"key1": [0, 1], "key2": [2, 3]})
a[0] = Batch(info={"key1": 2, "key3": 4})
print(a)
```
before:
```python
Batch(
    info: Batch(
              key1: array([0, 1]),
              key2: array([0, 3]),
          ),
)
```
after:
```python
ValueError: Creating keys is not supported by item assignment.
```

3. small optimization for `Batch.stack_` and `Batch.cat_`, raise ValueError when receiving invalid data format.
2021-02-02 19:28:05 +08:00
ChenDRAG
f0129f4ca7
Add CachedReplayBuffer and ReplayBufferManager (#278)
This is the second commit of 6 commits mentioned in #274, which features minor refactor of ReplayBuffer and adding two new ReplayBuffer classes called CachedReplayBuffer and ReplayBufferManager. You can check #274 for more detail.

1. Add ReplayBufferManager (handle a list of buffers) and CachedReplayBuffer;
2. Make sure the reserved keys cannot be edited by methods like `buffer.done = xxx`;
3. Add `set_batch` method for manually choosing the batch the ReplayBuffer wants to handle;
4. Add `sample_index` method, same as `sample` but only return index instead of both index and batch data;
5. Add `prev` (one-step previous transition index), `next` (one-step next transition index) and `unfinished_index` (the last modified index whose done==False);
6. Separate `alloc_fn` method for allocating new memory for `self._meta` when a new `(key, value)` pair comes in;
7. Move buffer's documentation to `docs/tutorials/concepts.rst`.

Co-authored-by: n+e <trinkle23897@gmail.com>
2021-01-29 12:23:18 +08:00
Nico Gürtler
5d13d8a453
Saving and loading replay buffer with HDF5 (#261)
As mentioned in #260, this pull request is about an implementation of saving and loading the replay buffer with HDF5.
2020-12-17 08:58:43 +08:00
n+e
5ed6c1c7aa
change the step in trainer (#235)
This PR separates the `global_step` into `env_step` and `gradient_step`. In the future, the data from the collecting state will be stored under `env_step`, and the data from the updating state will be stored under `gradient_step`.

Others:
- add `rew_std` and `best_result` into the monitor
- fix network unbounded in `test/continuous/test_sac_with_il.py` and `examples/box2d/bipedal_hardcore_sac.py`
- change the dependency of ray to 1.0.0 since ray-project/ray#10134 has been resolved
2020-10-04 21:55:43 +08:00
n+e
710966eda7
change API of train_fn and test_fn (#229)
train_fn(epoch) -> train_fn(epoch, num_env_step)
test_fn(epoch) -> test_fn(epoch, num_env_step)
2020-09-26 16:35:37 +08:00
rocknamx
bf39b9ef7d
clarify updating state (#224)
Add an indicator(i.e. `self.learning`) of learning will be convenient for distinguishing state of policy.
Meanwhile, the state of `self.training` will be undisputed in the training stage.
Related issue: #211 

Others:
- fix a bug in DDQN: target_q could not be sampled from np.random.rand
- fix a bug in DQN atari net: it should add a ReLU before the last layer
- fix a bug in collector timing

Co-authored-by: n+e <463003665@qq.com>
2020-09-22 16:28:46 +08:00
n+e
623bf24f0c
fix unittest (#218) 2020-09-14 15:59:32 +08:00
n+e
b284ace102
type check in unit test (#200)
Fix #195: Add mypy test in .github/workflows/docs_and_lint.yml.

Also remove the out-of-the-date api
2020-09-13 19:31:50 +08:00
n+e
c91def6cbc
code format and update function signatures (#213)
Cherry-pick from #200 

- update the function signature
- format code-style
- move _compile into separate functions
- fix a bug in to_torch and to_numpy (Batch)
- remove None in action_range

In short, the code-format only contains function-signature style and `'` -> `"`. (pick up from [black](https://github.com/psf/black))
2020-09-12 15:39:01 +08:00
n+e
b86d78766b
fix docs and add docstring check (#210)
- fix broken links and out-of-the-date content
- add pydocstyle and doc8 check
- remove collector.seed and collector.render
2020-09-11 07:55:37 +08:00
n+e
8bb8ecba6e
set policy.eval() before collector.collect (#204)
* fix #203

* no_grad argument in collector.collect
2020-09-06 16:20:16 +08:00
Trinkle23897
34f714a677 Numba acceleration (#193)
Training FPS improvement (base commit is 94bfb32):
test_pdqn: 1660 (without numba) -> 1930
discrete/test_ppo: 5100 -> 5170

since nstep has little impact on overall performance, the unit test result is:
GAE: 4.1s -> 0.057s
nstep: 0.3s -> 0.15s (little improvement)

Others:
- fix a bug in ttt set_eps
- keep only sumtree in segment tree implementation
- dirty fix for asyncVenv check_id test
2020-09-02 13:03:32 +08:00
yingchengyang
5b49192a48
DQN Atari examples (#187)
This PR aims to provide the script of Atari DQN setting:
- A speedrun of PongNoFrameskip-v4 (finished, about half an hour in i7-8750 + GTX1060 with 1M environment steps)
- A general script for all atari game
Since we use multiple env for simulation, the result is slightly different from the original paper, but consider to be acceptable.

It also adds another parameter save_only_last_obs for replay buffer in order to save the memory.

Co-authored-by: Trinkle23897 <463003665@qq.com>
2020-08-30 05:48:09 +08:00