#!/usr/bin/env python3

import os
from collections.abc import Sequence
from typing import Literal

from examples.mujoco.mujoco_env import MujocoEnvFactory
from tianshou.highlevel.config import SamplingConfig
from tianshou.highlevel.experiment import (
    ExperimentConfig,
    REDQExperimentBuilder,
)
from tianshou.highlevel.params.alpha import AutoAlphaFactoryDefault
from tianshou.highlevel.params.policy_params import REDQParams
from tianshou.utils import logging
from tianshou.utils.logging import datetime_tag


def main(
    experiment_config: ExperimentConfig,
    task: str = "Ant-v4",
    buffer_size: int = 1000000,
    hidden_sizes: Sequence[int] = (256, 256),
    ensemble_size: int = 10,
    subset_size: int = 2,
    actor_lr: float = 1e-3,
    critic_lr: float = 1e-3,
    gamma: float = 0.99,
    tau: float = 0.005,
    alpha: float = 0.2,
    auto_alpha: bool = False,
    alpha_lr: float = 3e-4,
    start_timesteps: int = 10000,
    epoch: int = 200,
    step_per_epoch: int = 5000,
    step_per_collect: int = 1,
    update_per_step: int = 20,
    n_step: int = 1,
    batch_size: int = 256,
    target_mode: Literal["mean", "min"] = "min",
    training_num: int = 1,
    test_num: int = 10,
) -> None:
    log_name = os.path.join(task, "redq", str(experiment_config.seed), datetime_tag())

    sampling_config = SamplingConfig(
        num_epochs=epoch,
        step_per_epoch=step_per_epoch,
        batch_size=batch_size,
        num_train_envs=training_num,
        num_test_envs=test_num,
        buffer_size=buffer_size,
        step_per_collect=step_per_collect,
        update_per_step=update_per_step,
        repeat_per_collect=None,
        start_timesteps=start_timesteps,
        start_timesteps_random=True,
    )

    env_factory = MujocoEnvFactory(
        task,
        train_seed=sampling_config.train_seed,
        test_seed=sampling_config.test_seed,
        obs_norm=False,
    )

    experiment = (
        REDQExperimentBuilder(env_factory, experiment_config, sampling_config)
        .with_redq_params(
            REDQParams(
                actor_lr=actor_lr,
                critic_lr=critic_lr,
                gamma=gamma,
                tau=tau,
                alpha=AutoAlphaFactoryDefault(lr=alpha_lr) if auto_alpha else alpha,
                estimation_step=n_step,
                target_mode=target_mode,
                subset_size=subset_size,
                ensemble_size=ensemble_size,
            ),
        )
        .with_actor_factory_default(hidden_sizes)
        .with_critic_ensemble_factory_default(hidden_sizes)
        .build()
    )
    experiment.run(run_name=log_name)


if __name__ == "__main__":
    logging.run_cli(main)