import argparse import os import pprint import gymnasium as gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import DQNPolicy from tianshou.trainer import OffpolicyTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="Acrobot-v1") parser.add_argument("--seed", type=int, default=0) parser.add_argument("--eps-test", type=float, default=0.05) parser.add_argument("--eps-train", type=float, default=0.5) parser.add_argument("--buffer-size", type=int, default=20000) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--gamma", type=float, default=0.95) parser.add_argument("--n-step", type=int, default=3) parser.add_argument("--target-update-freq", type=int, default=320) parser.add_argument("--epoch", type=int, default=10) parser.add_argument("--step-per-epoch", type=int, default=100000) parser.add_argument("--step-per-collect", type=int, default=100) parser.add_argument("--update-per-step", type=float, default=0.01) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128]) parser.add_argument("--dueling-q-hidden-sizes", type=int, nargs="*", default=[128, 128]) parser.add_argument("--dueling-v-hidden-sizes", type=int, nargs="*", default=[128, 128]) parser.add_argument("--training-num", type=int, default=10) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.0) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) return parser.parse_args() def test_dqn(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes} V_param = {"hidden_sizes": args.dueling_v_hidden_sizes} net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, dueling_param=(Q_param, V_param), ).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = DQNPolicy( model=net, optim=optim, action_space=env.action_space, discount_factor=args.gamma, estimation_step=args.n_step, target_update_freq=args.target_update_freq, ) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True, ) test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, args.task, "dqn") writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def train_fn(epoch, env_step): if env_step <= 100000: policy.set_eps(args.eps_train) elif env_step <= 500000: eps = args.eps_train - (env_step - 100000) / 400000 * (0.5 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.5 * args.eps_train) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # trainer result = OffpolicyTrainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.step_per_epoch, step_per_collect=args.step_per_collect, episode_per_test=args.test_num, batch_size=args.batch_size, update_per_step=args.update_per_step, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ).run() assert stop_fn(result.best_reward) if __name__ == "__main__": pprint.pprint(result) # Let's watch its performance! policy.eval() policy.set_eps(args.eps_test) test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}") if __name__ == "__main__": test_dqn(get_args())