import tensorflow as tf def DPG(policy, action_value): """ construct the gradient tensor of deterministic policy gradient :param policy: :param action_value: :return: list of (gradient, variable) pairs """ trainable_variables = list(policy.trainable_variables) critic_action_input = action_value.action_placeholder critic_value_loss = -tf.reduce_mean(action_value.value_tensor) policy_action_output = policy.action grad_ys = tf.gradients(critic_value_loss, critic_action_input)[0] # stop gradient in case policy and action value have shared variables grad_ys = tf.stop_gradient(grad_ys) deterministic_policy_grads = tf.gradients(policy_action_output, trainable_variables, grad_ys=grad_ys) grads_and_vars = [(grad, var) for grad, var in zip(deterministic_policy_grads, trainable_variables)] return grads_and_vars