import tensorflow as tf def identify_dependent_variables(tensor, candidate_variables): """ identify the variables that `tensor` depends on :param tensor: A Tensor. :param candidate_variables: A list of Variables. :return: A list of variables in `candidate variables` that has effect on `tensor` """ grads = tf.gradients(tensor, candidate_variables) return [var for var, grad in zip(candidate_variables, grads) if grad is not None] def get_soft_update_op(update_fraction, including_nets, excluding_nets=None): """ :param including_nets: :param excluding_nets: :return: """ assert 0 < update_fraction < 1, 'Unrecommended update_fraction <=0 or >=1!' variables = [] variables_old = [] for net in including_nets: for var, var_old in zip(net.network_weights, net.network_old_weights): if var not in variables: variables.append(var) variables_old.append(var_old) if excluding_nets: excluding_variables = [] for net in excluding_nets: excluding_variables += net.network_weights for var, var_old in zip(variables, variables_old): if var in excluding_variables: variables.remove(var) variables_old.remove(var_old) return [tf.assign(var_old, update_fraction * var + (1 - update_fraction) * var_old) for var_old, var in zip(variables_old, variables)]