import argparse
import datetime
import os
import pprint
import sys

import numpy as np
import torch
from atari_network import DQN
from atari_wrapper import make_atari_env
from torch.utils.tensorboard import SummaryWriter

from tianshou.data import Collector, VectorReplayBuffer
from tianshou.policy import IQNPolicy
from tianshou.trainer import OffpolicyTrainer
from tianshou.utils import TensorboardLogger, WandbLogger
from tianshou.utils.net.discrete import ImplicitQuantileNetwork


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--task", type=str, default="PongNoFrameskip-v4")
    parser.add_argument("--seed", type=int, default=1234)
    parser.add_argument("--scale-obs", type=int, default=0)
    parser.add_argument("--eps-test", type=float, default=0.005)
    parser.add_argument("--eps-train", type=float, default=1.0)
    parser.add_argument("--eps-train-final", type=float, default=0.05)
    parser.add_argument("--buffer-size", type=int, default=100000)
    parser.add_argument("--lr", type=float, default=0.0001)
    parser.add_argument("--gamma", type=float, default=0.99)
    parser.add_argument("--sample-size", type=int, default=32)
    parser.add_argument("--online-sample-size", type=int, default=8)
    parser.add_argument("--target-sample-size", type=int, default=8)
    parser.add_argument("--num-cosines", type=int, default=64)
    parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[512])
    parser.add_argument("--n-step", type=int, default=3)
    parser.add_argument("--target-update-freq", type=int, default=500)
    parser.add_argument("--epoch", type=int, default=100)
    parser.add_argument("--step-per-epoch", type=int, default=100000)
    parser.add_argument("--step-per-collect", type=int, default=10)
    parser.add_argument("--update-per-step", type=float, default=0.1)
    parser.add_argument("--batch-size", type=int, default=32)
    parser.add_argument("--training-num", type=int, default=10)
    parser.add_argument("--test-num", type=int, default=10)
    parser.add_argument("--logdir", type=str, default="log")
    parser.add_argument("--render", type=float, default=0.0)
    parser.add_argument(
        "--device",
        type=str,
        default="cuda" if torch.cuda.is_available() else "cpu",
    )
    parser.add_argument("--frames-stack", type=int, default=4)
    parser.add_argument("--resume-path", type=str, default=None)
    parser.add_argument("--resume-id", type=str, default=None)
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
    )
    parser.add_argument("--wandb-project", type=str, default="atari.benchmark")
    parser.add_argument(
        "--watch",
        default=False,
        action="store_true",
        help="watch the play of pre-trained policy only",
    )
    parser.add_argument("--save-buffer-name", type=str, default=None)
    return parser.parse_args()


def test_iqn(args=get_args()):
    env, train_envs, test_envs = make_atari_env(
        args.task,
        args.seed,
        args.training_num,
        args.test_num,
        scale=args.scale_obs,
        frame_stack=args.frames_stack,
    )
    args.state_shape = env.observation_space.shape or env.observation_space.n
    args.action_shape = env.action_space.shape or env.action_space.n
    # should be N_FRAMES x H x W
    print("Observations shape:", args.state_shape)
    print("Actions shape:", args.action_shape)
    # seed
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    # define model
    feature_net = DQN(*args.state_shape, args.action_shape, args.device, features_only=True)
    net = ImplicitQuantileNetwork(
        feature_net,
        args.action_shape,
        args.hidden_sizes,
        num_cosines=args.num_cosines,
        device=args.device,
    ).to(args.device)
    optim = torch.optim.Adam(net.parameters(), lr=args.lr)
    # define policy
    policy = IQNPolicy(
        model=net,
        optim=optim,
        action_space=env.action_space,
        discount_factor=args.gamma,
        sample_size=args.sample_size,
        online_sample_size=args.online_sample_size,
        target_sample_size=args.target_sample_size,
        estimation_step=args.n_step,
        target_update_freq=args.target_update_freq,
    ).to(args.device)
    # load a previous policy
    if args.resume_path:
        policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
        print("Loaded agent from: ", args.resume_path)
    # replay buffer: `save_last_obs` and `stack_num` can be removed together
    # when you have enough RAM
    buffer = VectorReplayBuffer(
        args.buffer_size,
        buffer_num=len(train_envs),
        ignore_obs_next=True,
        save_only_last_obs=True,
        stack_num=args.frames_stack,
    )
    # collector
    train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
    test_collector = Collector(policy, test_envs, exploration_noise=True)

    # log
    now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
    args.algo_name = "iqn"
    log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
    log_path = os.path.join(args.logdir, log_name)

    # logger
    if args.logger == "wandb":
        logger = WandbLogger(
            save_interval=1,
            name=log_name.replace(os.path.sep, "__"),
            run_id=args.resume_id,
            config=args,
            project=args.wandb_project,
        )
    writer = SummaryWriter(log_path)
    writer.add_text("args", str(args))
    if args.logger == "tensorboard":
        logger = TensorboardLogger(writer)
    else:  # wandb
        logger.load(writer)

    def save_best_fn(policy):
        torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))

    def stop_fn(mean_rewards: float) -> bool:
        if env.spec.reward_threshold:
            return mean_rewards >= env.spec.reward_threshold
        if "Pong" in args.task:
            return mean_rewards >= 20
        return False

    def train_fn(epoch, env_step):
        # nature DQN setting, linear decay in the first 1M steps
        if env_step <= 1e6:
            eps = args.eps_train - env_step / 1e6 * (args.eps_train - args.eps_train_final)
        else:
            eps = args.eps_train_final
        policy.set_eps(eps)
        if env_step % 1000 == 0:
            logger.write("train/env_step", env_step, {"train/eps": eps})

    def test_fn(epoch, env_step):
        policy.set_eps(args.eps_test)

    # watch agent's performance
    def watch():
        print("Setup test envs ...")
        policy.eval()
        policy.set_eps(args.eps_test)
        test_envs.seed(args.seed)
        if args.save_buffer_name:
            print(f"Generate buffer with size {args.buffer_size}")
            buffer = VectorReplayBuffer(
                args.buffer_size,
                buffer_num=len(test_envs),
                ignore_obs_next=True,
                save_only_last_obs=True,
                stack_num=args.frames_stack,
            )
            collector = Collector(policy, test_envs, buffer, exploration_noise=True)
            result = collector.collect(n_step=args.buffer_size)
            print(f"Save buffer into {args.save_buffer_name}")
            # Unfortunately, pickle will cause oom with 1M buffer size
            buffer.save_hdf5(args.save_buffer_name)
        else:
            print("Testing agent ...")
            test_collector.reset()
            result = test_collector.collect(n_episode=args.test_num, render=args.render)
        rew = result.returns_stat.mean
        print(f"Mean reward (over {result['n/ep']} episodes): {rew}")

    if args.watch:
        watch()
        sys.exit(0)

    # test train_collector and start filling replay buffer
    train_collector.collect(n_step=args.batch_size * args.training_num)
    # trainer

    result = OffpolicyTrainer(
        policy=policy,
        train_collector=train_collector,
        test_collector=test_collector,
        max_epoch=args.epoch,
        step_per_epoch=args.step_per_epoch,
        step_per_collect=args.step_per_collect,
        episode_per_test=args.test_num,
        batch_size=args.batch_size,
        train_fn=train_fn,
        test_fn=test_fn,
        stop_fn=stop_fn,
        save_best_fn=save_best_fn,
        logger=logger,
        update_per_step=args.update_per_step,
        test_in_train=False,
    ).run()

    pprint.pprint(result)
    watch()


if __name__ == "__main__":
    test_iqn(get_args())