import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import DQNPolicy from tianshou.env import SubprocVectorEnv from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from tianshou.env.atari import create_atari_environment from discrete_net import DQN def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='Pong') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.1) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.9) parser.add_argument('--n-step', type=int, default=1) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=100) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--collect-per-step', type=int, default=10) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--layer-num', type=int, default=3) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=8) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_known_args()[0] return args def test_dqn(args=get_args()): env = create_atari_environment(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.env.action_space.shape or env.env.action_space.n # train_envs = gym.make(args.task) train_envs = SubprocVectorEnv([ lambda: create_atari_environment(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv([ lambda: create_atari_environment( args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = DQN( args.state_shape[0], args.state_shape[1], args.action_shape, args.device) net = net.to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = DQNPolicy( net, optim, args.gamma, args.n_step, use_target_network=args.target_update_freq > 0, target_update_freq=args.target_update_freq) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * 4) print(len(train_collector.buffer)) # log writer = SummaryWriter(args.logdir + '/' + 'dqn') def stop_fn(x): if env.env.spec.reward_threshold: return x >= env.spec.reward_threshold else: return False def train_fn(x): policy.set_eps(args.eps_train) def test_fn(x): policy.set_eps(args.eps_test) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, writer=writer, task=args.task) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = create_atari_environment(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close() if __name__ == '__main__': test_dqn(get_args())