import argparse import os import pprint import gymnasium as gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import DQNPolicy from tianshou.trainer import OffpolicyTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Recurrent def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--reward-threshold', type=float, default=None) parser.add_argument('--seed', type=int, default=1) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.1) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--stack-num', type=int, default=4) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.95) parser.add_argument('--n-step', type=int, default=3) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=5) parser.add_argument('--step-per-epoch', type=int, default=20000) parser.add_argument('--update-per-step', type=float, default=1 / 16) parser.add_argument('--step-per-collect', type=int, default=16) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--layer-num', type=int, default=2) parser.add_argument('--training-num', type=int, default=16) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu' ) args = parser.parse_known_args()[0] return args def test_drqn(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n if args.reward_threshold is None: default_reward_threshold = {"CartPole-v0": 195} args.reward_threshold = default_reward_threshold.get( args.task, env.spec.reward_threshold ) # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)] ) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Recurrent(args.layer_num, args.state_shape, args.action_shape, args.device).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = DQNPolicy( net, optim, args.gamma, args.n_step, target_update_freq=args.target_update_freq ) # collector buffer = VectorReplayBuffer( args.buffer_size, buffer_num=len(train_envs), stack_num=args.stack_num, ignore_obs_next=True ) train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) # the stack_num is for RNN training: sample framestack obs test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, args.task, 'drqn') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= args.reward_threshold def train_fn(epoch, env_step): policy.set_eps(args.eps_train) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # trainer result = OffpolicyTrainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.step_per_epoch, step_per_collect=args.step_per_collect, episode_per_test=args.test_num, batch_size=args.batch_size, update_per_step=args.update_per_step, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger ).run() assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == '__main__': test_drqn(get_args())