from abc import ABC, abstractmethod from typing import Any, Callable, List, Optional, Tuple, Union import gymnasium as gym import numpy as np from tianshou.env.utils import gym_new_venv_step_type from tianshou.utils import deprecation class EnvWorker(ABC): """An abstract worker for an environment.""" def __init__(self, env_fn: Callable[[], gym.Env]) -> None: self._env_fn = env_fn self.is_closed = False self.result: Union[gym_new_venv_step_type, Tuple[np.ndarray, dict]] self.action_space = self.get_env_attr("action_space") # noqa: B009 self.is_reset = False @abstractmethod def get_env_attr(self, key: str) -> Any: pass @abstractmethod def set_env_attr(self, key: str, value: Any) -> None: pass def send(self, action: Optional[np.ndarray]) -> None: """Send action signal to low-level worker. When action is None, it indicates sending "reset" signal; otherwise it indicates "step" signal. The paired return value from "recv" function is determined by such kind of different signal. """ if hasattr(self, "send_action"): deprecation( "send_action will soon be deprecated. " "Please use send and recv for your own EnvWorker." ) if action is None: self.is_reset = True self.result = self.reset() else: self.is_reset = False self.send_action(action) def recv( self ) -> Union[gym_new_venv_step_type, Tuple[np.ndarray, dict]]: # noqa:E125 """Receive result from low-level worker. If the last "send" function sends a NULL action, it only returns a single observation; otherwise it returns a tuple of (obs, rew, done, info) or (obs, rew, terminated, truncated, info), based on whether the environment is using the old step API or the new one. """ if hasattr(self, "get_result"): deprecation( "get_result will soon be deprecated. " "Please use send and recv for your own EnvWorker." ) if not self.is_reset: self.result = self.get_result() return self.result @abstractmethod def reset(self, **kwargs: Any) -> Tuple[np.ndarray, dict]: pass def step(self, action: np.ndarray) -> gym_new_venv_step_type: """Perform one timestep of the environment's dynamic. "send" and "recv" are coupled in sync simulation, so users only call "step" function. But they can be called separately in async simulation, i.e. someone calls "send" first, and calls "recv" later. """ self.send(action) return self.recv() # type: ignore @staticmethod def wait( workers: List["EnvWorker"], wait_num: int, timeout: Optional[float] = None ) -> List["EnvWorker"]: """Given a list of workers, return those ready ones.""" raise NotImplementedError def seed(self, seed: Optional[int] = None) -> Optional[List[int]]: return self.action_space.seed(seed) # issue 299 @abstractmethod def render(self, **kwargs: Any) -> Any: """Render the environment.""" pass @abstractmethod def close_env(self) -> None: pass def close(self) -> None: if self.is_closed: return None self.is_closed = True self.close_env()