import argparse import os import pickle import pprint import gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector from tianshou.env import DummyVectorEnv from tianshou.policy import DiscreteBCQPolicy from tianshou.trainer import offline_trainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="CartPole-v0") parser.add_argument("--seed", type=int, default=1626) parser.add_argument("--eps-test", type=float, default=0.001) parser.add_argument("--lr", type=float, default=3e-4) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--n-step", type=int, default=3) parser.add_argument("--target-update-freq", type=int, default=320) parser.add_argument("--unlikely-action-threshold", type=float, default=0.6) parser.add_argument("--imitation-logits-penalty", type=float, default=0.01) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--update-per-epoch", type=int, default=2000) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.) parser.add_argument( "--load-buffer-name", type=str, default="./expert_DQN_CartPole-v0.pkl", ) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) parser.add_argument("--resume", action="store_true") parser.add_argument("--save-interval", type=int, default=4) args = parser.parse_known_args()[0] return args def test_discrete_bcq(args=get_args()): # envs env = gym.make(args.task) if args.task == 'CartPole-v0': env.spec.reward_threshold = 190 # lower the goal args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) test_envs.seed(args.seed) # model policy_net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device ).to(args.device) imitation_net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device ).to(args.device) optim = torch.optim.Adam( list(policy_net.parameters()) + list(imitation_net.parameters()), lr=args.lr ) policy = DiscreteBCQPolicy( policy_net, imitation_net, optim, args.gamma, args.n_step, args.target_update_freq, args.eps_test, args.unlikely_action_threshold, args.imitation_logits_penalty, ) # buffer assert os.path.exists(args.load_buffer_name), \ "Please run test_dqn.py first to get expert's data buffer." buffer = pickle.load(open(args.load_buffer_name, "rb")) # collector test_collector = Collector(policy, test_envs, exploration_noise=True) log_path = os.path.join(args.logdir, args.task, 'discrete_bcq') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer, save_interval=args.save_interval) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def save_checkpoint_fn(epoch, env_step, gradient_step): # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html torch.save( { 'model': policy.state_dict(), 'optim': optim.state_dict(), }, os.path.join(log_path, 'checkpoint.pth') ) if args.resume: # load from existing checkpoint print(f"Loading agent under {log_path}") ckpt_path = os.path.join(log_path, 'checkpoint.pth') if os.path.exists(ckpt_path): checkpoint = torch.load(ckpt_path, map_location=args.device) policy.load_state_dict(checkpoint['model']) optim.load_state_dict(checkpoint['optim']) print("Successfully restore policy and optim.") else: print("Fail to restore policy and optim.") result = offline_trainer( policy, buffer, test_collector, args.epoch, args.update_per_epoch, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, logger=logger, resume_from_log=args.resume, save_checkpoint_fn=save_checkpoint_fn ) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() policy.set_eps(args.eps_test) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") def test_discrete_bcq_resume(args=get_args()): args.resume = True test_discrete_bcq(args) if __name__ == "__main__": test_discrete_bcq(get_args())