import argparse import os import pickle import pprint import gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector from tianshou.env import DummyVectorEnv from tianshou.policy import DiscreteCRRPolicy from tianshou.trainer import offline_trainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="CartPole-v0") parser.add_argument("--seed", type=int, default=1626) parser.add_argument("--lr", type=float, default=7e-4) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--n-step", type=int, default=3) parser.add_argument("--target-update-freq", type=int, default=320) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--update-per-epoch", type=int, default=1000) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.) parser.add_argument( "--load-buffer-name", type=str, default="./expert_DQN_CartPole-v0.pkl", ) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) args = parser.parse_known_args()[0] return args def test_discrete_crr(args=get_args()): # envs env = gym.make(args.task) if args.task == 'CartPole-v0': env.spec.reward_threshold = 190 # lower the goal args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) test_envs.seed(args.seed) # model actor = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax=False ) critic = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax=False ) optim = torch.optim.Adam( list(actor.parameters()) + list(critic.parameters()), lr=args.lr ) policy = DiscreteCRRPolicy( actor, critic, optim, args.gamma, target_update_freq=args.target_update_freq, ).to(args.device) # buffer assert os.path.exists(args.load_buffer_name), \ "Please run test_dqn.py first to get expert's data buffer." buffer = pickle.load(open(args.load_buffer_name, "rb")) # collector test_collector = Collector(policy, test_envs, exploration_noise=True) log_path = os.path.join(args.logdir, args.task, 'discrete_cql') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold result = offline_trainer( policy, buffer, test_collector, args.epoch, args.update_per_epoch, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, logger=logger ) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == "__main__": test_discrete_crr(get_args())