#!/usr/bin/env python3 import argparse import csv import os import re from collections import defaultdict from os import PathLike from re import Pattern from typing import Any import numpy as np import tqdm from tensorboard.backend.event_processing import event_accumulator def find_all_files(root_dir: str | PathLike[str], pattern: str | Pattern[str]) -> list: """Find all files under root_dir according to relative pattern.""" file_list = [] for dirname, _, files in os.walk(root_dir): for f in files: absolute_path = os.path.join(dirname, f) if re.match(pattern, absolute_path): file_list.append(absolute_path) return file_list def group_files(file_list: list[str], pattern: str | Pattern[str]) -> dict[str, list]: res = defaultdict(list) for f in file_list: match = re.search(pattern, f) key = match.group() if match else "" res[key].append(f) return res def csv2numpy(csv_file: str) -> dict[Any, np.ndarray]: csv_dict = defaultdict(list) with open(csv_file) as f: for row in csv.DictReader(f): for k, v in row.items(): csv_dict[k].append(eval(v)) return {k: np.array(v) for k, v in csv_dict.items()} def convert_tfevents_to_csv( root_dir: str | PathLike[str], refresh: bool = False, ) -> dict[str, list]: """Recursively convert test/reward from all tfevent file under root_dir to csv. This function assumes that there is at most one tfevents file in each directory and will add suffix to that directory. :param bool refresh: re-create csv file under any condition. """ tfevent_files = find_all_files(root_dir, re.compile(r"^.*tfevents.*$")) print(f"Converting {len(tfevent_files)} tfevents files under {root_dir} ...") result = {} with tqdm.tqdm(tfevent_files) as t: for tfevent_file in t: t.set_postfix(file=tfevent_file) output_file = os.path.join(os.path.split(tfevent_file)[0], "test_reward.csv") if os.path.exists(output_file) and not refresh: with open(output_file) as f: content = list(csv.reader(f)) if content[0] == ["env_step", "reward", "time"]: for i in range(1, len(content)): content[i] = list(map(eval, content[i])) result[output_file] = content continue ea = event_accumulator.EventAccumulator(tfevent_file) ea.Reload() initial_time = ea._first_event_timestamp content = [["env_step", "reward", "time"]] for test_reward in ea.scalars.Items("test/reward"): content.append( [ round(test_reward.step, 4), round(test_reward.value, 4), round(test_reward.wall_time - initial_time, 4), ], ) with open(output_file, "w") as f: csv.writer(f).writerows(content) result[output_file] = content return result def merge_csv( csv_files: dict[str, list], root_dir: str | PathLike[str], remove_zero: bool = False, ) -> None: """Merge result in csv_files into a single csv file.""" assert len(csv_files) > 0 if remove_zero: for v in csv_files.values(): if v[1][0] == 0: v.pop(1) sorted_keys = sorted(csv_files.keys()) sorted_values = [csv_files[k][1:] for k in sorted_keys] content = [ [ "env_step", "reward", "reward:shaded", *["reward:" + os.path.relpath(f, root_dir) for f in sorted_keys], ], ] for rows in zip(*sorted_values, strict=True): array = np.array(rows) assert len(set(array[:, 0])) == 1, (set(array[:, 0]), array[:, 0]) line = [rows[0][0], round(array[:, 1].mean(), 4), round(array[:, 1].std(), 4)] line += array[:, 1].tolist() content.append(line) output_path = os.path.join(root_dir, f"test_reward_{len(csv_files)}seeds.csv") print(f"Output merged csv file to {output_path} with {len(content[1:])} lines.") with open(output_path, "w") as f: csv.writer(f).writerows(content) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--refresh", action="store_true", help="Re-generate all csv files instead of using existing one.", ) parser.add_argument( "--remove-zero", action="store_true", help="Remove the data point of env_step == 0.", ) parser.add_argument("--root-dir", type=str) args = parser.parse_args() csv_files = convert_tfevents_to_csv(args.root_dir, args.refresh) merge_csv(csv_files, args.root_dir, args.remove_zero)