import numpy as np from tianshou.data.batch import Batch class ReplayBuffer(object): """docstring for ReplayBuffer""" def __init__(self, size): super().__init__() self._maxsize = size self._index = self._size = 0 def __len__(self): return self._size def _add_to_buffer(self, name, inst): if inst is None: return if self.__dict__.get(name, None) is None: if isinstance(inst, np.ndarray): self.__dict__[name] = np.zeros([self._maxsize, *inst.shape]) elif isinstance(inst, dict): self.__dict__[name] = np.array([{} for _ in range(self._maxsize)]) else: # assume `inst` is a number self.__dict__[name] = np.zeros([self._maxsize]) self.__dict__[name][self._index] = inst def add(self, obs, act, rew, done, obs_next=0, info={}, weight=None): ''' weight: importance weights, disabled here ''' assert isinstance(info, dict), 'You should return a dict in the last argument of env.step function.' self._add_to_buffer('obs', obs) self._add_to_buffer('act', act) self._add_to_buffer('rew', rew) self._add_to_buffer('done', done) self._add_to_buffer('obs_next', obs_next) self._add_to_buffer('info', info) self._size = min(self._size + 1, self._maxsize) self._index = (self._index + 1) % self._maxsize def reset(self): self._index = self._size = 0 def sample_indice(self, batch_size): return np.random.choice(self._size, batch_size) def sample(self, batch_size): indice = self.sample_index(batch_size) return Batch(obs=self.obs[indice], act=self.act[indice], rew=self.rew[indice], done=self.done[indice], obs_next=self.obs_next[indice], info=self.info[indice]) class PrioritizedReplayBuffer(ReplayBuffer): """docstring for PrioritizedReplayBuffer""" def __init__(self, size): super().__init__(size) def add(self, obs, act, rew, done, obs_next, info={}, weight=None): raise NotImplementedError def sample_indice(self, batch_size): raise NotImplementedError def sample(self, batch_size): raise NotImplementedError