import argparse import os import pickle import pprint import gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import RainbowPolicy from tianshou.trainer import offpolicy_trainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net from tianshou.utils.net.discrete import NoisyLinear def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--reward-threshold', type=float, default=None) parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.1) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.9) parser.add_argument('--num-atoms', type=int, default=51) parser.add_argument('--v-min', type=float, default=-10.) parser.add_argument('--v-max', type=float, default=10.) parser.add_argument('--noisy-std', type=float, default=0.1) parser.add_argument('--n-step', type=int, default=3) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--step-per-epoch', type=int, default=8000) parser.add_argument('--step-per-collect', type=int, default=8) parser.add_argument('--update-per-step', type=float, default=0.125) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument( '--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128] ) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument('--prioritized-replay', action="store_true", default=False) parser.add_argument('--alpha', type=float, default=0.6) parser.add_argument('--beta', type=float, default=0.4) parser.add_argument('--beta-final', type=float, default=1.) parser.add_argument('--resume', action="store_true") parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu' ) parser.add_argument("--save-interval", type=int, default=4) args = parser.parse_known_args()[0] return args def test_rainbow(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n if args.reward_threshold is None: default_reward_threshold = {"CartPole-v0": 195} args.reward_threshold = default_reward_threshold.get( args.task, env.spec.reward_threshold ) # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)] ) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model def noisy_linear(x, y): return NoisyLinear(x, y, args.noisy_std) net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax=True, num_atoms=args.num_atoms, dueling_param=({ "linear_layer": noisy_linear }, { "linear_layer": noisy_linear }) ) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = RainbowPolicy( net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max, args.n_step, target_update_freq=args.target_update_freq ).to(args.device) # buffer if args.prioritized_replay: buf = PrioritizedVectorReplayBuffer( args.buffer_size, buffer_num=len(train_envs), alpha=args.alpha, beta=args.beta, weight_norm=True ) else: buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs)) # collector train_collector = Collector(policy, train_envs, buf, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, args.task, 'rainbow') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer, save_interval=args.save_interval) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= args.reward_threshold def train_fn(epoch, env_step): # eps annealing, just a demo if env_step <= 10000: policy.set_eps(args.eps_train) elif env_step <= 50000: eps = args.eps_train - (env_step - 10000) / \ 40000 * (0.9 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.1 * args.eps_train) # beta annealing, just a demo if args.prioritized_replay: if env_step <= 10000: beta = args.beta elif env_step <= 50000: beta = args.beta - (env_step - 10000) / \ 40000 * (args.beta - args.beta_final) else: beta = args.beta_final buf.set_beta(beta) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) def save_checkpoint_fn(epoch, env_step, gradient_step): # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html torch.save( { 'model': policy.state_dict(), 'optim': optim.state_dict(), }, os.path.join(log_path, 'checkpoint.pth') ) pickle.dump( train_collector.buffer, open(os.path.join(log_path, 'train_buffer.pkl'), "wb") ) if args.resume: # load from existing checkpoint print(f"Loading agent under {log_path}") ckpt_path = os.path.join(log_path, 'checkpoint.pth') if os.path.exists(ckpt_path): checkpoint = torch.load(ckpt_path, map_location=args.device) policy.load_state_dict(checkpoint['model']) policy.optim.load_state_dict(checkpoint['optim']) print("Successfully restore policy and optim.") else: print("Fail to restore policy and optim.") buffer_path = os.path.join(log_path, 'train_buffer.pkl') if os.path.exists(buffer_path): train_collector.buffer = pickle.load(open(buffer_path, "rb")) print("Successfully restore buffer.") else: print("Fail to restore buffer.") # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, update_per_step=args.update_per_step, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, logger=logger, resume_from_log=args.resume, save_checkpoint_fn=save_checkpoint_fn ) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() policy.set_eps(args.eps_test) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") def test_rainbow_resume(args=get_args()): args.resume = True test_rainbow(args) def test_prainbow(args=get_args()): args.prioritized_replay = True args.gamma = .95 args.seed = 1 test_rainbow(args) if __name__ == '__main__': test_rainbow(get_args())