import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import PGPolicy from tianshou.env import DummyVectorEnv from tianshou.utils.net.common import Net from tianshou.trainer import onpolicy_trainer from tianshou.data import Collector, VectorReplayBuffer def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.95) parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--collect-per-step', type=int, default=8) parser.add_argument('--repeat-per-collect', type=int, default=2) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument('--rew-norm', type=int, default=1) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_known_args()[0] return args def test_pg(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax=True).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) dist = torch.distributions.Categorical policy = PGPolicy(net, optim, dist, args.gamma, reward_normalization=args.rew_norm) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, 'pg') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold # trainer result = onpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.repeat_per_collect, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == '__main__': test_pg()