import time import tqdm import numpy as np from collections import defaultdict from torch.utils.tensorboard import SummaryWriter from typing import Dict, Union, Callable, Optional from tianshou.policy import BasePolicy from tianshou.utils import tqdm_config, MovAvg from tianshou.data import Collector, ReplayBuffer from tianshou.trainer import test_episode, gather_info def offline_trainer( policy: BasePolicy, buffer: ReplayBuffer, test_collector: Collector, max_epoch: int, step_per_epoch: int, episode_per_test: int, batch_size: int, test_fn: Optional[Callable[[int, Optional[int]], None]] = None, stop_fn: Optional[Callable[[float], bool]] = None, save_fn: Optional[Callable[[BasePolicy], None]] = None, reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None, writer: Optional[SummaryWriter] = None, log_interval: int = 1, verbose: bool = True, ) -> Dict[str, Union[float, str]]: """A wrapper for offline trainer procedure. The "step" in trainer means a policy network update. :param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class. :param test_collector: the collector used for testing. :type test_collector: :class:`~tianshou.data.Collector` :param int max_epoch: the maximum number of epochs for training. The training process might be finished before reaching the ``max_epoch``. :param int step_per_epoch: the number of policy network updates, so-called gradient steps, per epoch. :param episode_per_test: the number of episodes for one policy evaluation. :param int batch_size: the batch size of sample data, which is going to feed in the policy network. :param function test_fn: a hook called at the beginning of testing in each epoch. It can be used to perform custom additional operations, with the signature ``f(num_epoch: int, step_idx: int) -> None``. :param function save_fn: a hook called when the undiscounted average mean reward in evaluation phase gets better, with the signature ``f(policy: BasePolicy) -> None``. :param function stop_fn: a function with signature ``f(mean_rewards: float) -> bool``, receives the average undiscounted returns of the testing result, returns a boolean which indicates whether reaching the goal. :param function reward_metric: a function with signature ``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``, used in multi-agent RL. We need to return a single scalar for each episode's result to monitor training in the multi-agent RL setting. This function specifies what is the desired metric, e.g., the reward of agent 1 or the average reward over all agents. :param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard SummaryWriter; if None is given, it will not write logs to TensorBoard. :param int log_interval: the log interval of the writer. :param bool verbose: whether to print the information. :return: See :func:`~tianshou.trainer.gather_info`. """ gradient_step = 0 best_epoch, best_reward, best_reward_std = -1, -1.0, 0.0 stat: Dict[str, MovAvg] = defaultdict(MovAvg) start_time = time.time() test_collector.reset_stat() for epoch in range(1, 1 + max_epoch): policy.train() with tqdm.trange( step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config ) as t: for i in t: gradient_step += 1 losses = policy.update(batch_size, buffer) data = {"gradient_step": str(gradient_step)} for k in losses.keys(): stat[k].add(losses[k]) data[k] = f"{stat[k].get():.6f}" if writer and gradient_step % log_interval == 0: writer.add_scalar( "train/" + k, stat[k].get(), global_step=gradient_step) t.set_postfix(**data) # test result = test_episode(policy, test_collector, test_fn, epoch, episode_per_test, writer, gradient_step, reward_metric) if best_epoch == -1 or best_reward < result["rews"].mean(): best_reward, best_reward_std = result["rews"].mean(), result['rews'].std() best_epoch = epoch if save_fn: save_fn(policy) if verbose: print(f"Epoch #{epoch}: test_reward: {result['rews'].mean():.6f} ± " f"{result['rews'].std():.6f}, best_reward: {best_reward:.6f} ± " f"{best_reward_std:.6f} in #{best_epoch}") if stop_fn and stop_fn(best_reward): break return gather_info(start_time, None, test_collector, best_reward, best_reward_std)