import time import numpy as np from torch.utils.tensorboard import SummaryWriter from typing import Any, Dict, Union, Callable, Optional from tianshou.data import Collector from tianshou.policy import BasePolicy def test_episode( policy: BasePolicy, collector: Collector, test_fn: Optional[Callable[[int, Optional[int]], None]], epoch: int, n_episode: int, writer: Optional[SummaryWriter] = None, global_step: Optional[int] = None, reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None, ) -> Dict[str, Any]: """A simple wrapper of testing policy in collector.""" collector.reset_env() collector.reset_buffer() policy.eval() if test_fn: test_fn(epoch, global_step) result = collector.collect(n_episode=n_episode) if reward_metric: result["rews"] = reward_metric(result["rews"]) if writer is not None and global_step is not None: rews, lens = result["rews"], result["lens"] writer.add_scalar("test/rew", rews.mean(), global_step=global_step) writer.add_scalar("test/rew_std", rews.std(), global_step=global_step) writer.add_scalar("test/len", lens.mean(), global_step=global_step) writer.add_scalar("test/len_std", lens.std(), global_step=global_step) return result def gather_info( start_time: float, train_c: Optional[Collector], test_c: Collector, best_reward: float, best_reward_std: float, ) -> Dict[str, Union[float, str]]: """A simple wrapper of gathering information from collectors. :return: A dictionary with the following keys: * ``train_step`` the total collected step of training collector; * ``train_episode`` the total collected episode of training collector; * ``train_time/collector`` the time for collecting frames in the \ training collector; * ``train_time/model`` the time for training models; * ``train_speed`` the speed of training (frames per second); * ``test_step`` the total collected step of test collector; * ``test_episode`` the total collected episode of test collector; * ``test_time`` the time for testing; * ``test_speed`` the speed of testing (frames per second); * ``best_reward`` the best reward over the test results; * ``duration`` the total elapsed time. """ duration = time.time() - start_time model_time = duration - test_c.collect_time test_speed = test_c.collect_step / test_c.collect_time result: Dict[str, Union[float, str]] = { "test_step": test_c.collect_step, "test_episode": test_c.collect_episode, "test_time": f"{test_c.collect_time:.2f}s", "test_speed": f"{test_speed:.2f} step/s", "best_reward": best_reward, "best_result": f"{best_reward:.2f} ± {best_reward_std:.2f}", "duration": f"{duration:.2f}s", "train_time/model": f"{model_time:.2f}s", } if train_c is not None: model_time -= train_c.collect_time train_speed = train_c.collect_step / (duration - test_c.collect_time) result.update({ "train_step": train_c.collect_step, "train_episode": train_c.collect_episode, "train_time/collector": f"{train_c.collect_time:.2f}s", "train_time/model": f"{model_time:.2f}s", "train_speed": f"{train_speed:.2f} step/s", }) return result