#!/usr/bin/env python import tensorflow as tf import gym import numpy as np import time import logging logging.basicConfig(level=logging.INFO) # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy.dqn as policy import tianshou.core.value_function.action_value as value_function from tianshou.data.data_buffer.vanilla import VanillaReplayBuffer from tianshou.data.data_collector import DataCollector from tianshou.data.tester import test_policy_in_env if __name__ == '__main__': env = gym.make('CartPole-v0') observation_dim = env.observation_space.shape action_dim = env.action_space.n ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) def my_network(): net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh) net = tf.layers.dense(net, 32, activation=tf.nn.tanh) action_values = tf.layers.dense(net, action_dim, activation=None) return None, action_values # no policy head ### 2. build policy, loss, optimizer dqn = value_function.DQN(my_network, observation_placeholder=observation_ph, has_old_net=True) pi = policy.DQN(dqn) dqn_loss = losses.qlearning(dqn) total_loss = dqn_loss optimizer = tf.train.AdamOptimizer(1e-4) train_op = optimizer.minimize(total_loss, var_list=list(dqn.trainable_variables)) ### 3. define data collection replay_buffer = VanillaReplayBuffer(capacity=2e4, nstep=1) process_functions = [advantage_estimation.nstep_q_return(1, dqn)] managed_networks = [dqn] data_collector = DataCollector( env=env, policy=pi, data_buffer=replay_buffer, process_functions=process_functions, managed_networks=managed_networks ) ### 4. start training # hyper-parameters batch_size = 32 replay_buffer_warmup = 1000 epsilon_decay_interval = 500 epsilon = 0.6 test_interval = 5000 target_network_update_interval = 800 seed = 123 np.random.seed(seed) tf.set_random_seed(seed) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # assign actor to pi_old pi.sync_weights() start_time = time.time() pi.set_epsilon_train(epsilon) data_collector.collect(num_timesteps=replay_buffer_warmup) for i in range(int(1e8)): # number of training steps # anneal epsilon step-wise if (i + 1) % epsilon_decay_interval == 0 and epsilon > 0.1: epsilon -= 0.1 pi.set_epsilon_train(epsilon) # collect data data_collector.collect(num_timesteps=4) # update network feed_dict = data_collector.next_batch(batch_size) sess.run(train_op, feed_dict=feed_dict) # test every 1000 training steps # tester could share some code with batch! if i % test_interval == 0: print('Step {}, elapsed time: {:.1f} min'.format(i, (time.time() - start_time) / 60)) # epsilon 0.05 as in nature paper pi.set_epsilon_test(0.05) test_policy_in_env(pi, env, num_timesteps=1000) if i % target_network_update_interval == 0: pi.sync_weights()