#!/usr/bin/env python from __future__ import absolute_import import tensorflow as tf import gym import numpy as np import time import argparse # our lib imports here! It's ok to append path in examples import sys sys.path.append('..') from tianshou.core import losses from tianshou.data.batch import Batch import tianshou.data.advantage_estimation as advantage_estimation import tianshou.core.policy as policy import tianshou.core.value_function.action_value as value_function import tianshou.core.opt as opt if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--render", action="store_true", default=False) args = parser.parse_args() env = gym.make('Pendulum-v0') observation_dim = env.observation_space.shape action_dim = env.action_space.shape clip_param = 0.2 num_batches = 10 batch_size = 512 seed = 0 np.random.seed(seed) tf.set_random_seed(seed) ### 1. build network with pure tf observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) action_ph = tf.placeholder(tf.float32, shape=(None,) + action_dim) def my_network(): net = tf.layers.dense(observation_ph, 32, activation=tf.nn.relu) net = tf.layers.dense(net, 32, activation=tf.nn.relu) action = tf.layers.dense(net, action_dim[0], activation=None) action_value_input = tf.concat([observation_ph, action_ph], axis=1) net = tf.layers.dense(action_value_input, 32, activation=tf.nn.relu) net = tf.layers.dense(net, 32, activation=tf.nn.relu) action_value = tf.layers.dense(net, 1, activation=None) return action, action_value ### 2. build policy, loss, optimizer actor = policy.Deterministic(my_network, observation_placeholder=observation_ph, weight_update=1e-3) critic = value_function.ActionValue(my_network, observation_placeholder=observation_ph, action_placeholder=action_ph, weight_update=1e-3) critic_loss = losses.value_mse(critic) critic_optimizer = tf.train.AdamOptimizer(1e-3) critic_train_op = critic_optimizer.minimize(critic_loss, var_list=critic.trainable_variables) dpg_grads = opt.DPG(actor, critic) # not sure if it's correct actor_optimizer = tf.train.AdamOptimizer(1e-4) actor_train_op = actor_optimizer.apply_gradients(dpg_grads) ### 3. define data collection data_collector = Batch(env, actor, [advantage_estimation.ddpg_return(actor, critic)], [actor, critic], render = args.render) ### 4. start training config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(config=config) as sess: sess.run(tf.global_variables_initializer()) # assign actor to pi_old actor.sync_weights() # TODO: automate this for policies with target network critic.sync_weights() start_time = time.time() for i in range(100): # collect data data_collector.collect(num_episodes=50) # print current return print('Epoch {}:'.format(i)) data_collector.statistics() # update network for _ in range(num_batches): feed_dict = data_collector.next_batch(batch_size) sess.run([actor_train_op, critic_train_op], feed_dict=feed_dict) print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))