import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import PSRLPolicy # from tianshou.utils import BasicLogger from tianshou.trainer import onpolicy_trainer from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv, SubprocVectorEnv def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='NChain-v0') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--buffer-size', type=int, default=50000) parser.add_argument('--epoch', type=int, default=5) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--episode-per-collect', type=int, default=1) parser.add_argument('--training-num', type=int, default=1) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.0) parser.add_argument('--rew-mean-prior', type=float, default=0.0) parser.add_argument('--rew-std-prior', type=float, default=1.0) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--eps', type=float, default=0.01) parser.add_argument('--add-done-loop', action='store_true') return parser.parse_known_args()[0] def test_psrl(args=get_args()): env = gym.make(args.task) if args.task == "NChain-v0": env.spec.reward_threshold = 3647 # described in PSRL paper print("reward threshold:", env.spec.reward_threshold) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # train_envs = gym.make(args.task) train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model n_action = args.action_shape n_state = args.state_shape trans_count_prior = np.ones((n_state, n_action, n_state)) rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior) rew_std_prior = np.full((n_state, n_action), args.rew_std_prior) policy = PSRLPolicy( trans_count_prior, rew_mean_prior, rew_std_prior, args.gamma, args.eps, args.add_done_loop) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, 'psrl') writer = SummaryWriter(log_path) writer.add_text("args", str(args)) # logger = BasicLogger(writer) def stop_fn(mean_rewards): if env.spec.reward_threshold: return mean_rewards >= env.spec.reward_threshold else: return False train_collector.collect(n_step=args.buffer_size, random=True) # trainer, test it without logger result = onpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, 1, args.test_num, 0, episode_per_collect=args.episode_per_collect, stop_fn=stop_fn, # logger=logger, test_in_train=False) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! policy.eval() test_envs.seed(args.seed) test_collector.reset() result = test_collector.collect(n_episode=args.test_num, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") elif env.spec.reward_threshold: assert result["best_reward"] >= env.spec.reward_threshold if __name__ == '__main__': test_psrl()