import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.env import VectorEnv from tianshou.policy import DQNPolicy from tianshou.utils.net.common import Net from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer, PrioritizedReplayBuffer def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.1) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.9) parser.add_argument('--n-step', type=int, default=3) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--step-per-epoch', type=int, default=1000) parser.add_argument('--collect-per-step', type=int, default=10) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--layer-num', type=int, default=3) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument('--prioritized-replay', type=int, default=0) parser.add_argument('--alpha', type=float, default=0.6) parser.add_argument('--beta', type=float, default=0.4) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_known_args()[0] return args def test_dqn(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.layer_num, args.state_shape, args.action_shape, args.device, # dueling=(1, 1) ).to(args.device) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = DQNPolicy( net, optim, args.gamma, args.n_step, target_update_freq=args.target_update_freq) # buffer if args.prioritized_replay > 0: buf = PrioritizedReplayBuffer( args.buffer_size, alpha=args.alpha, beta=args.beta) else: buf = ReplayBuffer(args.buffer_size) # collector train_collector = Collector(policy, train_envs, buf) test_collector = Collector(policy, test_envs) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size) # log log_path = os.path.join(args.logdir, args.task, 'dqn') writer = SummaryWriter(log_path) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(x): return x >= env.spec.reward_threshold def train_fn(x): # eps annnealing, just a demo if x <= int(0.1 * args.epoch): policy.set_eps(args.eps_train) elif x <= int(0.5 * args.epoch): eps = args.eps_train - (x - 0.1 * args.epoch) / \ (0.4 * args.epoch) * (0.9 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.1 * args.eps_train) def test_fn(x): policy.set_eps(args.eps_test) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, writer=writer) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close() def test_pdqn(args=get_args()): args.prioritized_replay = 1 args.gamma = .95 test_dqn(args) if __name__ == '__main__': test_dqn(get_args())