import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import BasePolicy from tianshou.env import VectorEnv, SubprocVectorEnv from tianshou.data import Collector, Batch, ReplayBuffer if __name__ == '__main__': from env import MyTestEnv else: # pytest from test.base.env import MyTestEnv class MyPolicy(BasePolicy): def __init__(self, dict_state=False): super().__init__() self.dict_state = dict_state def forward(self, batch, state=None): if self.dict_state: return Batch(act=np.ones(len(batch.obs['index']))) return Batch(act=np.ones(len(batch.obs))) def learn(self): pass def preprocess_fn(**kwargs): # modify info before adding into the buffer # if info is not provided from env, it will be a ``Batch()``. if not kwargs.get('info', Batch()).is_empty(): n = len(kwargs['obs']) info = kwargs['info'] for i in range(n): info[i].update(rew=kwargs['rew'][i]) return {'info': info} # or: return Batch(info=info) else: return Batch() class Logger(object): def __init__(self, writer): self.cnt = 0 self.writer = writer def log(self, info): self.writer.add_scalar( 'key', np.mean(info['key']), global_step=self.cnt) self.cnt += 1 def test_collector(): writer = SummaryWriter('log/collector') logger = Logger(writer) env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0) for i in [2, 3, 4, 5]] venv = SubprocVectorEnv(env_fns) dum = VectorEnv(env_fns) policy = MyPolicy() env = env_fns[0]() c0 = Collector(policy, env, ReplayBuffer(size=100, ignore_obs_next=False), preprocess_fn) c0.collect(n_step=3, log_fn=logger.log) assert np.allclose(c0.buffer.obs[:3], [0, 1, 0]) assert np.allclose(c0.buffer[:3].obs_next, [1, 2, 1]) c0.collect(n_episode=3, log_fn=logger.log) assert np.allclose(c0.buffer.obs[:8], [0, 1, 0, 1, 0, 1, 0, 1]) assert np.allclose(c0.buffer[:8].obs_next, [1, 2, 1, 2, 1, 2, 1, 2]) c0.collect(n_step=3, random=True) c1 = Collector(policy, venv, ReplayBuffer(size=100, ignore_obs_next=False), preprocess_fn) c1.collect(n_step=6) assert np.allclose(c1.buffer.obs[:11], [0, 1, 0, 1, 2, 0, 1, 0, 1, 2, 3]) assert np.allclose(c1.buffer[:11].obs_next, [1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4]) c1.collect(n_episode=2) assert np.allclose(c1.buffer.obs[11:21], [0, 1, 2, 3, 4, 0, 1, 0, 1, 2]) assert np.allclose(c1.buffer[11:21].obs_next, [1, 2, 3, 4, 5, 1, 2, 1, 2, 3]) c1.collect(n_episode=3, random=True) c2 = Collector(policy, dum, ReplayBuffer(size=100, ignore_obs_next=False), preprocess_fn) c2.collect(n_episode=[1, 2, 2, 2]) assert np.allclose(c2.buffer.obs_next[:26], [ 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]) c2.reset_env() c2.collect(n_episode=[2, 2, 2, 2]) assert np.allclose(c2.buffer.obs_next[26:54], [ 1, 2, 1, 2, 3, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5]) c2.collect(n_episode=[1, 1, 1, 1], random=True) def test_collector_with_dict_state(): env = MyTestEnv(size=5, sleep=0, dict_state=True) policy = MyPolicy(dict_state=True) c0 = Collector(policy, env, ReplayBuffer(size=100), preprocess_fn) c0.collect(n_step=3) c0.collect(n_episode=3) env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, dict_state=True) for i in [2, 3, 4, 5]] envs = VectorEnv(env_fns) c1 = Collector(policy, envs, ReplayBuffer(size=100), preprocess_fn) c1.collect(n_step=10) c1.collect(n_episode=[2, 1, 1, 2]) batch = c1.sample(10) print(batch) c0.buffer.update(c1.buffer) assert np.allclose(c0.buffer[:len(c0.buffer)].obs.index, [ 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.]) c2 = Collector(policy, envs, ReplayBuffer(size=100, stack_num=4), preprocess_fn) c2.collect(n_episode=[0, 0, 0, 10]) batch = c2.sample(10) print(batch['obs_next']['index']) def test_collector_with_ma(): def reward_metric(x): return x.sum() env = MyTestEnv(size=5, sleep=0, ma_rew=4) policy = MyPolicy() c0 = Collector(policy, env, ReplayBuffer(size=100), preprocess_fn, reward_metric=reward_metric) r = c0.collect(n_step=3)['rew'] assert np.asanyarray(r).size == 1 and r == 0. r = c0.collect(n_episode=3)['rew'] assert np.asanyarray(r).size == 1 and r == 4. env_fns = [lambda x=i: MyTestEnv(size=x, sleep=0, ma_rew=4) for i in [2, 3, 4, 5]] envs = VectorEnv(env_fns) c1 = Collector(policy, envs, ReplayBuffer(size=100), preprocess_fn, reward_metric=reward_metric) r = c1.collect(n_step=10)['rew'] assert np.asanyarray(r).size == 1 and r == 4. r = c1.collect(n_episode=[2, 1, 1, 2])['rew'] assert np.asanyarray(r).size == 1 and r == 4. batch = c1.sample(10) print(batch) c0.buffer.update(c1.buffer) obs = [ 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 2., 3., 4., 0., 1., 0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4., 0., 1., 0., 1., 2., 0., 1., 0., 1., 2., 3., 0., 1., 2., 3., 4.] assert np.allclose(c0.buffer[:len(c0.buffer)].obs, obs) rew = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1] assert np.allclose(c0.buffer[:len(c0.buffer)].rew, [[x] * 4 for x in rew]) c2 = Collector(policy, envs, ReplayBuffer(size=100, stack_num=4), preprocess_fn, reward_metric=reward_metric) r = c2.collect(n_episode=[0, 0, 0, 10])['rew'] assert np.asanyarray(r).size == 1 and r == 4. batch = c2.sample(10) print(batch['obs_next']) if __name__ == '__main__': test_collector() test_collector_with_dict_state() test_collector_with_ma()