import argparse import os import pickle import gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import QRDQNPolicy from tianshou.trainer import offpolicy_trainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--seed', type=int, default=1) parser.add_argument('--eps-test', type=float, default=0.05) parser.add_argument('--eps-train', type=float, default=0.1) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--gamma', type=float, default=0.9) parser.add_argument('--num-quantiles', type=int, default=200) parser.add_argument('--n-step', type=int, default=3) parser.add_argument('--target-update-freq', type=int, default=320) parser.add_argument('--epoch', type=int, default=10) parser.add_argument('--step-per-epoch', type=int, default=10000) parser.add_argument('--step-per-collect', type=int, default=10) parser.add_argument('--update-per-step', type=float, default=0.1) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument( '--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128] ) parser.add_argument('--training-num', type=int, default=10) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument('--prioritized-replay', action="store_true", default=False) parser.add_argument('--alpha', type=float, default=0.6) parser.add_argument('--beta', type=float, default=0.4) parser.add_argument( '--save-buffer-name', type=str, default="./expert_QRDQN_CartPole-v0.pkl" ) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu' ) args = parser.parse_known_args()[0] return args def gather_data(): args = get_args() env = gym.make(args.task) if args.task == 'CartPole-v0': env.spec.reward_threshold = 190 # lower the goal args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)] ) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net( args.state_shape, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax=False, num_atoms=args.num_quantiles, ) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy = QRDQNPolicy( net, optim, args.gamma, args.num_quantiles, args.n_step, target_update_freq=args.target_update_freq, ).to(args.device) # buffer if args.prioritized_replay: buf = PrioritizedVectorReplayBuffer( args.buffer_size, buffer_num=len(train_envs), alpha=args.alpha, beta=args.beta, ) else: buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs)) # collector train_collector = Collector(policy, train_envs, buf, exploration_noise=True) test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, args.task, 'qrdqn') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def train_fn(epoch, env_step): # eps annnealing, just a demo if env_step <= 10000: policy.set_eps(args.eps_train) elif env_step <= 50000: eps = args.eps_train - (env_step - 10000) / \ 40000 * (0.9 * args.eps_train) policy.set_eps(eps) else: policy.set_eps(0.1 * args.eps_train) def test_fn(epoch, env_step): policy.set_eps(args.eps_test) # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_fn=save_fn, logger=logger, update_per_step=args.update_per_step, ) assert stop_fn(result['best_reward']) # save buffer in pickle format, for imitation learning unittest buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(test_envs)) policy.set_eps(0.2) collector = Collector(policy, test_envs, buf, exploration_noise=True) result = collector.collect(n_step=args.buffer_size) pickle.dump(buf, open(args.save_buffer_name, "wb")) print(result["rews"].mean()) return buf