import argparse import os import pickle import pprint import gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector from tianshou.env import DummyVectorEnv from tianshou.policy import DiscreteBCQPolicy from tianshou.trainer import offline_trainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import ActorCritic, Net from tianshou.utils.net.discrete import Actor if __name__ == "__main__": from gather_cartpole_data import gather_data else: # pytest from test.offline.gather_cartpole_data import gather_data def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="CartPole-v0") parser.add_argument("--seed", type=int, default=1626) parser.add_argument("--eps-test", type=float, default=0.001) parser.add_argument("--lr", type=float, default=3e-4) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--n-step", type=int, default=3) parser.add_argument("--target-update-freq", type=int, default=320) parser.add_argument("--unlikely-action-threshold", type=float, default=0.6) parser.add_argument("--imitation-logits-penalty", type=float, default=0.01) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--update-per-epoch", type=int, default=2000) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.) parser.add_argument( "--load-buffer-name", type=str, default="./expert_QRDQN_CartPole-v0.pkl", ) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) parser.add_argument("--resume", action="store_true") parser.add_argument("--save-interval", type=int, default=4) args = parser.parse_known_args()[0] return args def test_discrete_bcq(args=get_args()): # envs env = gym.make(args.task) if args.task == 'CartPole-v0': env.spec.reward_threshold = 190 # lower the goal args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n test_envs = DummyVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)] ) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, args.hidden_sizes[0], device=args.device) policy_net = Actor( net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device ).to(args.device) imitation_net = Actor( net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device ).to(args.device) actor_critic = ActorCritic(policy_net, imitation_net) optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr) policy = DiscreteBCQPolicy( policy_net, imitation_net, optim, args.gamma, args.n_step, args.target_update_freq, args.eps_test, args.unlikely_action_threshold, args.imitation_logits_penalty, ) # buffer if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name): buffer = pickle.load(open(args.load_buffer_name, "rb")) else: buffer = gather_data() # collector test_collector = Collector(policy, test_envs, exploration_noise=True) log_path = os.path.join(args.logdir, args.task, 'discrete_bcq') writer = SummaryWriter(log_path) logger = TensorboardLogger(writer, save_interval=args.save_interval) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold def save_checkpoint_fn(epoch, env_step, gradient_step): # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html torch.save( { 'model': policy.state_dict(), 'optim': optim.state_dict(), }, os.path.join(log_path, 'checkpoint.pth') ) if args.resume: # load from existing checkpoint print(f"Loading agent under {log_path}") ckpt_path = os.path.join(log_path, 'checkpoint.pth') if os.path.exists(ckpt_path): checkpoint = torch.load(ckpt_path, map_location=args.device) policy.load_state_dict(checkpoint['model']) optim.load_state_dict(checkpoint['optim']) print("Successfully restore policy and optim.") else: print("Fail to restore policy and optim.") result = offline_trainer( policy, buffer, test_collector, args.epoch, args.update_per_epoch, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, logger=logger, resume_from_log=args.resume, save_checkpoint_fn=save_checkpoint_fn ) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() policy.set_eps(args.eps_test) collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") def test_discrete_bcq_resume(args=get_args()): args.resume = True test_discrete_bcq(args) if __name__ == "__main__": test_discrete_bcq(get_args())