from typing import Any, Dict, Optional, Sequence, Tuple, Union import numpy as np import torch from torch import nn from tianshou.utils.net.discrete import NoisyLinear class DQN(nn.Module): """Reference: Human-level control through deep reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], device: Union[str, int, torch.device] = "cpu", features_only: bool = False, output_dim: Optional[int] = None, ) -> None: super().__init__() self.device = device self.net = nn.Sequential( nn.Conv2d(c, 32, kernel_size=8, stride=4), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(inplace=True), nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(inplace=True), nn.Flatten() ) with torch.no_grad(): self.output_dim = np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:]) if not features_only: self.net = nn.Sequential( self.net, nn.Linear(self.output_dim, 512), nn.ReLU(inplace=True), nn.Linear(512, np.prod(action_shape)) ) self.output_dim = np.prod(action_shape) elif output_dim is not None: self.net = nn.Sequential( self.net, nn.Linear(self.output_dim, output_dim), nn.ReLU(inplace=True) ) self.output_dim = output_dim def forward( self, obs: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: r"""Mapping: s -> Q(s, \*).""" obs = torch.as_tensor(obs, device=self.device, dtype=torch.float32) return self.net(obs), state class C51(DQN): """Reference: A distributional perspective on reinforcement learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_atoms: int = 51, device: Union[str, int, torch.device] = "cpu", ) -> None: self.action_num = np.prod(action_shape) super().__init__(c, h, w, [self.action_num * num_atoms], device) self.num_atoms = num_atoms def forward( self, obs: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" obs, state = super().forward(obs) obs = obs.view(-1, self.num_atoms).softmax(dim=-1) obs = obs.view(-1, self.action_num, self.num_atoms) return obs, state class Rainbow(DQN): """Reference: Rainbow: Combining Improvements in Deep Reinforcement Learning. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_atoms: int = 51, noisy_std: float = 0.5, device: Union[str, int, torch.device] = "cpu", is_dueling: bool = True, is_noisy: bool = True, ) -> None: super().__init__(c, h, w, action_shape, device, features_only=True) self.action_num = np.prod(action_shape) self.num_atoms = num_atoms def linear(x, y): if is_noisy: return NoisyLinear(x, y, noisy_std) else: return nn.Linear(x, y) self.Q = nn.Sequential( linear(self.output_dim, 512), nn.ReLU(inplace=True), linear(512, self.action_num * self.num_atoms) ) self._is_dueling = is_dueling if self._is_dueling: self.V = nn.Sequential( linear(self.output_dim, 512), nn.ReLU(inplace=True), linear(512, self.num_atoms) ) self.output_dim = self.action_num * self.num_atoms def forward( self, obs: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" obs, state = super().forward(obs) q = self.Q(obs) q = q.view(-1, self.action_num, self.num_atoms) if self._is_dueling: v = self.V(obs) v = v.view(-1, 1, self.num_atoms) logits = q - q.mean(dim=1, keepdim=True) + v else: logits = q probs = logits.softmax(dim=2) return probs, state class QRDQN(DQN): """Reference: Distributional Reinforcement Learning with Quantile \ Regression. For advanced usage (how to customize the network), please refer to :ref:`build_the_network`. """ def __init__( self, c: int, h: int, w: int, action_shape: Sequence[int], num_quantiles: int = 200, device: Union[str, int, torch.device] = "cpu", ) -> None: self.action_num = np.prod(action_shape) super().__init__(c, h, w, [self.action_num * num_quantiles], device) self.num_quantiles = num_quantiles def forward( self, obs: Union[np.ndarray, torch.Tensor], state: Optional[Any] = None, info: Dict[str, Any] = {}, ) -> Tuple[torch.Tensor, Any]: r"""Mapping: x -> Z(x, \*).""" obs, state = super().forward(obs) obs = obs.view(-1, self.action_num, self.num_quantiles) return obs, state