#!/usr/bin/env python3 import os from collections.abc import Sequence from typing import Literal import torch from jsonargparse import CLI from examples.mujoco.mujoco_env import MujocoEnvFactory from tianshou.highlevel.config import SamplingConfig from tianshou.highlevel.experiment import ( ExperimentConfig, PGExperimentBuilder, ) from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear from tianshou.highlevel.params.policy_params import PGParams from tianshou.utils import logging from tianshou.utils.logging import datetime_tag def main( experiment_config: ExperimentConfig, task: str = "Ant-v3", buffer_size: int = 4096, hidden_sizes: Sequence[int] = (64, 64), lr: float = 1e-3, gamma: float = 0.99, epoch: int = 100, step_per_epoch: int = 30000, step_per_collect: int = 2048, repeat_per_collect: int = 1, batch_size: int = 99999, training_num: int = 64, test_num: int = 10, rew_norm: bool = True, action_bound_method: Literal["clip", "tanh"] = "tanh", lr_decay: bool = True, ): log_name = os.path.join(task, "reinforce", str(experiment_config.seed), datetime_tag()) sampling_config = SamplingConfig( num_epochs=epoch, step_per_epoch=step_per_epoch, batch_size=batch_size, num_train_envs=training_num, num_test_envs=test_num, buffer_size=buffer_size, step_per_collect=step_per_collect, repeat_per_collect=repeat_per_collect, ) env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config, obs_norm=True) experiment = ( PGExperimentBuilder(env_factory, experiment_config, sampling_config) .with_pg_params( PGParams( discount_factor=gamma, action_bound_method=action_bound_method, reward_normalization=rew_norm, lr=lr, lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config) if lr_decay else None, ), ) .with_actor_factory_default(hidden_sizes, torch.nn.Tanh, continuous_unbounded=True) .build() ) experiment.run(log_name) if __name__ == "__main__": logging.run_main(lambda: CLI(main))