import argparse import os import pprint import gymnasium as gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.exploration import GaussianNoise from tianshou.policy import DDPGPolicy from tianshou.policy.base import BasePolicy from tianshou.trainer import OffpolicyTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net from tianshou.utils.net.continuous import Actor, Critic from tianshou.utils.space_info import SpaceInfo def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="Pendulum-v1") parser.add_argument("--reward-threshold", type=float, default=None) parser.add_argument("--seed", type=int, default=0) parser.add_argument("--buffer-size", type=int, default=20000) parser.add_argument("--actor-lr", type=float, default=1e-4) parser.add_argument("--critic-lr", type=float, default=1e-3) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--tau", type=float, default=0.005) parser.add_argument("--exploration-noise", type=float, default=0.1) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--step-per-epoch", type=int, default=20000) parser.add_argument("--step-per-collect", type=int, default=8) parser.add_argument("--update-per-step", type=float, default=0.125) parser.add_argument("--batch-size", type=int, default=128) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[128, 128]) parser.add_argument("--training-num", type=int, default=8) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.0) parser.add_argument("--rew-norm", action="store_true", default=False) parser.add_argument("--n-step", type=int, default=3) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) return parser.parse_known_args()[0] def test_ddpg(args: argparse.Namespace = get_args()) -> None: env = gym.make(args.task) space_info = SpaceInfo.from_env(env) args.state_shape = space_info.observation_info.obs_shape args.action_shape = space_info.action_info.action_shape args.max_action = space_info.action_info.max_action if args.reward_threshold is None: default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250} args.reward_threshold = default_reward_threshold.get( args.task, env.spec.reward_threshold if env.spec else None, ) # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(state_shape=args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor(net, args.action_shape, max_action=args.max_action, device=args.device).to( args.device, ) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net = Net( state_shape=args.state_shape, action_shape=args.action_shape, hidden_sizes=args.hidden_sizes, concat=True, device=args.device, ) critic = Critic(net, device=args.device).to(args.device) critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr) policy: DDPGPolicy = DDPGPolicy( actor=actor, actor_optim=actor_optim, critic=critic, critic_optim=critic_optim, tau=args.tau, gamma=args.gamma, exploration_noise=GaussianNoise(sigma=args.exploration_noise), estimation_step=args.n_step, action_space=env.action_space, ) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), exploration_noise=True, ) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, "ddpg") writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy: BasePolicy) -> None: torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards: float) -> bool: return mean_rewards >= args.reward_threshold # trainer result = OffpolicyTrainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.step_per_epoch, step_per_collect=args.step_per_collect, episode_per_test=args.test_num, batch_size=args.batch_size, update_per_step=args.update_per_step, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ).run() assert stop_fn(result.best_reward) if __name__ == "__main__": pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) collector_stats = collector.collect(n_episode=1, render=args.render, is_eval=True) print(collector_stats) if __name__ == "__main__": test_ddpg()