import argparse import os import pprint import gymnasium as gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import DQNPolicy from tianshou.policy.base import BasePolicy from tianshou.trainer import OffpolicyTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Recurrent from tianshou.utils.space_info import SpaceInfo def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="CartPole-v1") parser.add_argument("--reward-threshold", type=float, default=None) parser.add_argument("--seed", type=int, default=1) parser.add_argument("--eps-test", type=float, default=0.05) parser.add_argument("--eps-train", type=float, default=0.1) parser.add_argument("--buffer-size", type=int, default=20000) parser.add_argument("--stack-num", type=int, default=4) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--gamma", type=float, default=0.95) parser.add_argument("--n-step", type=int, default=3) parser.add_argument("--target-update-freq", type=int, default=320) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--step-per-epoch", type=int, default=20000) parser.add_argument("--update-per-step", type=float, default=1 / 16) parser.add_argument("--step-per-collect", type=int, default=16) parser.add_argument("--batch-size", type=int, default=128) parser.add_argument("--layer-num", type=int, default=2) parser.add_argument("--training-num", type=int, default=16) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.0) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) return parser.parse_known_args()[0] def test_drqn(args: argparse.Namespace = get_args()) -> None: env = gym.make(args.task) assert isinstance(env.action_space, gym.spaces.Discrete) space_info = SpaceInfo.from_env(env) args.state_shape = space_info.observation_info.obs_shape args.action_shape = space_info.action_info.action_shape if args.reward_threshold is None: default_reward_threshold = {"CartPole-v1": 195} args.reward_threshold = default_reward_threshold.get( args.task, env.spec.reward_threshold if env.spec else None, ) # train_envs = gym.make(args.task) # you can also use tianshou.env.SubprocVectorEnv train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Recurrent(args.layer_num, args.state_shape, args.action_shape, args.device).to( args.device, ) optim = torch.optim.Adam(net.parameters(), lr=args.lr) policy: DQNPolicy = DQNPolicy( model=net, optim=optim, discount_factor=args.gamma, estimation_step=args.n_step, action_space=env.action_space, target_update_freq=args.target_update_freq, ) # collector buffer = VectorReplayBuffer( args.buffer_size, buffer_num=len(train_envs), stack_num=args.stack_num, ignore_obs_next=True, ) train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) # the stack_num is for RNN training: sample framestack obs test_collector = Collector(policy, test_envs, exploration_noise=True) # policy.set_eps(1) train_collector.reset() train_collector.collect(n_step=args.batch_size * args.training_num) # log log_path = os.path.join(args.logdir, args.task, "drqn") writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy: BasePolicy) -> None: torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards: float) -> bool: return mean_rewards >= args.reward_threshold def train_fn(epoch: int, env_step: int) -> None: policy.set_eps(args.eps_train) def test_fn(epoch: int, env_step: int | None) -> None: policy.set_eps(args.eps_test) # trainer result = OffpolicyTrainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.step_per_epoch, step_per_collect=args.step_per_collect, episode_per_test=args.test_num, batch_size=args.batch_size, update_per_step=args.update_per_step, train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ).run() assert stop_fn(result.best_reward) if __name__ == "__main__": pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) collector.reset() collector_stats = collector.collect(n_episode=1, render=args.render, is_eval=True) print(collector_stats) if __name__ == "__main__": test_drqn(get_args())