import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.policy import TD3Policy from tianshou.trainer import offpolicy_trainer from tianshou.data import Collector, ReplayBuffer from tianshou.env import VectorEnv, SubprocVectorEnv from continuous_net import Actor, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='PointMaze-v1') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--actor-lr', type=float, default=3e-5) parser.add_argument('--critic-lr', type=float, default=1e-4) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--tau', type=float, default=0.005) parser.add_argument('--exploration-noise', type=float, default=0.1) parser.add_argument('--policy-noise', type=float, default=0.2) parser.add_argument('--noise-clip', type=float, default=0.5) parser.add_argument('--update-actor-freq', type=int, default=2) parser.add_argument('--epoch', type=int, default=100) parser.add_argument('--step-per-epoch', type=int, default=2400) parser.add_argument('--collect-per-step', type=int, default=10) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--layer-num', type=int, default=1) parser.add_argument('--training-num', type=int, default=8) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') parser.add_argument('--max_episode_steps', type=int, default=2000) args = parser.parse_known_args()[0] return args def test_td3(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] # train_envs = gym.make(args.task) train_envs = VectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model actor = Actor( args.layer_num, args.state_shape, args.action_shape, args.max_action, args.device ).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) critic1 = Critic( args.layer_num, args.state_shape, args.action_shape, args.device ).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) critic2 = Critic( args.layer_num, args.state_shape, args.action_shape, args.device ).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) policy = TD3Policy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, args.exploration_noise, args.policy_noise, args.update_actor_freq, args.noise_clip, [env.action_space.low[0], env.action_space.high[0]], reward_normalization=True, ignore_done=True) # collector train_collector = Collector( policy, train_envs, ReplayBuffer(args.buffer_size)) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log writer = SummaryWriter(args.logdir + '/' + 'td3') def stop_fn(x): if env.spec.reward_threshold: return x >= env.spec.reward_threshold else: return False # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.collect_per_step, args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer, task=args.task) assert stop_fn(result['best_reward']) train_collector.close() test_collector.close() if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) collector = Collector(policy, env) result = collector.collect(n_step=1000, render=args.render) print(f'Final reward: {result["rew"]}, length: {result["len"]}') collector.close() if __name__ == '__main__': test_td3()