import os import gym import torch import pprint import argparse import numpy as np from torch.utils.tensorboard import SummaryWriter from tianshou.utils import BasicLogger from tianshou.env import SubprocVectorEnv from tianshou.utils.net.common import Net from tianshou.policy import DiscreteSACPolicy from tianshou.trainer import offpolicy_trainer from tianshou.utils.net.discrete import Actor, Critic from tianshou.data import Collector, VectorReplayBuffer def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--task', type=str, default='CartPole-v0') parser.add_argument('--seed', type=int, default=1626) parser.add_argument('--buffer-size', type=int, default=20000) parser.add_argument('--actor-lr', type=float, default=1e-4) parser.add_argument('--critic-lr', type=float, default=1e-3) parser.add_argument('--alpha-lr', type=float, default=3e-4) parser.add_argument('--gamma', type=float, default=0.95) parser.add_argument('--tau', type=float, default=0.005) parser.add_argument('--alpha', type=float, default=0.05) parser.add_argument('--auto-alpha', action="store_true", default=False) parser.add_argument('--epoch', type=int, default=5) parser.add_argument('--step-per-epoch', type=int, default=10000) parser.add_argument('--step-per-collect', type=int, default=10) parser.add_argument('--update-per-step', type=float, default=0.1) parser.add_argument('--batch-size', type=int, default=128) parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128]) parser.add_argument('--training-num', type=int, default=10) parser.add_argument('--test-num', type=int, default=100) parser.add_argument('--logdir', type=str, default='log') parser.add_argument('--render', type=float, default=0.0) parser.add_argument('--rew-norm', action="store_true", default=False) parser.add_argument('--n-step', type=int, default=3) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu') args = parser.parse_known_args()[0] return args def test_discrete_sac(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n train_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.training_num)]) test_envs = SubprocVectorEnv( [lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor(net, args.action_shape, softmax_output=False, device=args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net_c1 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) critic1 = Critic(net_c1, last_size=args.action_shape, device=args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) net_c2 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) critic2 = Critic(net_c2, last_size=args.action_shape, device=args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) # better not to use auto alpha in CartPole if args.auto_alpha: target_entropy = 0.98 * np.log(np.prod(args.action_shape)) log_alpha = torch.zeros(1, requires_grad=True, device=args.device) alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) args.alpha = (target_entropy, log_alpha, alpha_optim) policy = DiscreteSACPolicy( actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim, args.tau, args.gamma, args.alpha, estimation_step=args.n_step, reward_normalization=args.rew_norm) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, 'discrete_sac') writer = SummaryWriter(log_path) logger = BasicLogger(writer) def save_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) def stop_fn(mean_rewards): return mean_rewards >= env.spec.reward_threshold # trainer result = offpolicy_trainer( policy, train_collector, test_collector, args.epoch, args.step_per_epoch, args.step_per_collect, args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False) assert stop_fn(result['best_reward']) if __name__ == '__main__': pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == '__main__': test_discrete_sac()