#!/usr/bin/env python3

import argparse
import os
import re

import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import numpy as np
from tools import csv2numpy, find_all_files, group_files


def smooth(y, radius, mode="two_sided", valid_only=False):
    """Smooth signal y, where radius is determines the size of the window.

    mode='twosided':
        average over the window [max(index - radius, 0), min(index + radius, len(y)-1)]
    mode='causal':
        average over the window [max(index - radius, 0), index]
    valid_only: put nan in entries where the full-sized window is not available
    """
    assert mode in ("two_sided", "causal")
    if len(y) < 2 * radius + 1:
        return np.ones_like(y) * y.mean()
    if mode == "two_sided":
        convkernel = np.ones(2 * radius + 1)
        out = np.convolve(y, convkernel, mode="same") / np.convolve(
            np.ones_like(y),
            convkernel,
            mode="same",
        )
        if valid_only:
            out[:radius] = out[-radius:] = np.nan
    elif mode == "causal":
        convkernel = np.ones(radius)
        out = np.convolve(y, convkernel, mode="full") / np.convolve(
            np.ones_like(y),
            convkernel,
            mode="full",
        )
        out = out[: -radius + 1]
        if valid_only:
            out[:radius] = np.nan
    return out


COLORS = [
    # deepmind style
    "#0072B2",
    "#009E73",
    "#D55E00",
    "#CC79A7",
    # '#F0E442',
    "#d73027",  # RED
    # built-in color
    "blue",
    "red",
    "pink",
    "cyan",
    "magenta",
    "yellow",
    "black",
    "purple",
    "brown",
    "orange",
    "teal",
    "lightblue",
    "lime",
    "lavender",
    "turquoise",
    "darkgreen",
    "tan",
    "salmon",
    "gold",
    "darkred",
    "darkblue",
    "green",
    # personal color
    "#313695",  # DARK BLUE
    "#74add1",  # LIGHT BLUE
    "#f46d43",  # ORANGE
    "#4daf4a",  # GREEN
    "#984ea3",  # PURPLE
    "#f781bf",  # PINK
    "#ffc832",  # YELLOW
    "#000000",  # BLACK
]


def plot_ax(
    ax,
    file_lists,
    legend_pattern=".*",
    xlabel=None,
    ylabel=None,
    title=None,
    xlim=None,
    xkey="env_step",
    ykey="reward",
    smooth_radius=0,
    shaded_std=True,
    legend_outside=False,
):
    def legend_fn(x):
        # return os.path.split(os.path.join(
        #     args.root_dir, x))[0].replace('/', '_') + " (10)"
        return re.search(legend_pattern, x).group(0)

    legneds = map(legend_fn, file_lists)
    # sort filelist according to legends
    file_lists = [f for _, f in sorted(zip(legneds, file_lists, strict=True))]
    legneds = list(map(legend_fn, file_lists))

    for index, csv_file in enumerate(file_lists):
        csv_dict = csv2numpy(csv_file)
        x, y = csv_dict[xkey], csv_dict[ykey]
        y = smooth(y, radius=smooth_radius)
        color = COLORS[index % len(COLORS)]
        ax.plot(x, y, color=color)
        if shaded_std and ykey + ":shaded" in csv_dict:
            y_shaded = smooth(csv_dict[ykey + ":shaded"], radius=smooth_radius)
            ax.fill_between(x, y - y_shaded, y + y_shaded, color=color, alpha=0.2)

    ax.legend(
        legneds,
        loc=2 if legend_outside else None,
        bbox_to_anchor=(1, 1) if legend_outside else None,
    )
    ax.xaxis.set_major_formatter(mticker.EngFormatter())
    if xlim is not None:
        ax.set_xlim(xmin=0, xmax=xlim)
    # add title
    ax.set_title(title)
    # add labels
    if xlabel is not None:
        ax.set_xlabel(xlabel)
    if ylabel is not None:
        ax.set_ylabel(ylabel)


def plot_figure(
    file_lists,
    group_pattern=None,
    fig_length=6,
    fig_width=6,
    sharex=False,
    sharey=False,
    title=None,
    **kwargs,
):
    if not group_pattern:
        fig, ax = plt.subplots(figsize=(fig_length, fig_width))
        plot_ax(ax, file_lists, title=title, **kwargs)
    else:
        res = group_files(file_lists, group_pattern)
        row_n = int(np.ceil(len(res) / 3))
        col_n = min(len(res), 3)
        fig, axes = plt.subplots(
            row_n,
            col_n,
            sharex=sharex,
            sharey=sharey,
            figsize=(fig_length * col_n, fig_width * row_n),
            squeeze=False,
        )
        axes = axes.flatten()
        for i, (k, v) in enumerate(res.items()):
            plot_ax(axes[i], v, title=k, **kwargs)
    if title:  # add title
        fig.suptitle(title, fontsize=20)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="plotter")
    parser.add_argument(
        "--fig-length",
        type=int,
        default=6,
        help="matplotlib figure length (default: 6)",
    )
    parser.add_argument(
        "--fig-width",
        type=int,
        default=6,
        help="matplotlib figure width (default: 6)",
    )
    parser.add_argument(
        "--style",
        default="seaborn",
        help="matplotlib figure style (default: seaborn)",
    )
    parser.add_argument("--title", default=None, help="matplotlib figure title (default: None)")
    parser.add_argument(
        "--xkey",
        default="env_step",
        help="x-axis key in csv file (default: env_step)",
    )
    parser.add_argument("--ykey", default="rew", help="y-axis key in csv file (default: rew)")
    parser.add_argument(
        "--smooth",
        type=int,
        default=0,
        help="smooth radius of y axis (default: 0)",
    )
    parser.add_argument("--xlabel", default="Timesteps", help="matplotlib figure xlabel")
    parser.add_argument("--ylabel", default="Episode Reward", help="matplotlib figure ylabel")
    parser.add_argument(
        "--shaded-std",
        action="store_true",
        help="shaded region corresponding to standard deviation of the group",
    )
    parser.add_argument(
        "--sharex",
        action="store_true",
        help="whether to share x axis within multiple sub-figures",
    )
    parser.add_argument(
        "--sharey",
        action="store_true",
        help="whether to share y axis within multiple sub-figures",
    )
    parser.add_argument(
        "--legend-outside",
        action="store_true",
        help="place the legend outside of the figure",
    )
    parser.add_argument("--xlim", type=int, default=None, help="x-axis limitation (default: None)")
    parser.add_argument("--root-dir", default="./", help="root dir (default: ./)")
    parser.add_argument(
        "--file-pattern",
        type=str,
        default=r".*/test_rew_\d+seeds.csv$",
        help="regular expression to determine whether or not to include target csv "
        "file, default to including all test_rew_{num}seeds.csv file under rootdir",
    )
    parser.add_argument(
        "--group-pattern",
        type=str,
        default=r"(/|^)\w*?\-v(\d|$)",
        help="regular expression to group files in sub-figure, default to grouping "
        'according to env_name dir, "" means no grouping',
    )
    parser.add_argument(
        "--legend-pattern",
        type=str,
        default=r".*",
        help="regular expression to extract legend from csv file path, default to "
        "using file path as legend name.",
    )
    parser.add_argument("--show", action="store_true", help="show figure")
    parser.add_argument("--output-path", type=str, help="figure save path", default="./figure.png")
    parser.add_argument("--dpi", type=int, default=200, help="figure dpi (default: 200)")
    args = parser.parse_args()
    file_lists = find_all_files(args.root_dir, re.compile(args.file_pattern))
    file_lists = [os.path.relpath(f, args.root_dir) for f in file_lists]
    if args.style:
        plt.style.use(args.style)
    os.chdir(args.root_dir)
    plot_figure(
        file_lists,
        group_pattern=args.group_pattern,
        legend_pattern=args.legend_pattern,
        fig_length=args.fig_length,
        fig_width=args.fig_width,
        title=args.title,
        xlabel=args.xlabel,
        ylabel=args.ylabel,
        xkey=args.xkey,
        ykey=args.ykey,
        xlim=args.xlim,
        sharex=args.sharex,
        sharey=args.sharey,
        smooth_radius=args.smooth,
        shaded_std=args.shaded_std,
        legend_outside=args.legend_outside,
    )
    if args.output_path:
        plt.savefig(args.output_path, dpi=args.dpi, bbox_inches="tight")
    if args.show:
        plt.show()