import argparse import os import pprint import gymnasium as gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import DiscreteSACPolicy from tianshou.trainer import OffpolicyTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net from tianshou.utils.net.discrete import Actor, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="CartPole-v0") parser.add_argument("--reward-threshold", type=float, default=None) parser.add_argument("--seed", type=int, default=1) parser.add_argument("--buffer-size", type=int, default=20000) parser.add_argument("--actor-lr", type=float, default=1e-4) parser.add_argument("--critic-lr", type=float, default=1e-3) parser.add_argument("--alpha-lr", type=float, default=3e-4) parser.add_argument("--gamma", type=float, default=0.95) parser.add_argument("--tau", type=float, default=0.005) parser.add_argument("--alpha", type=float, default=0.05) parser.add_argument("--auto-alpha", action="store_true", default=False) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--step-per-epoch", type=int, default=10000) parser.add_argument("--step-per-collect", type=int, default=10) parser.add_argument("--update-per-step", type=float, default=0.1) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64]) parser.add_argument("--training-num", type=int, default=10) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.0) parser.add_argument("--n-step", type=int, default=3) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) return parser.parse_known_args()[0] def test_discrete_sac(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n if args.reward_threshold is None: default_reward_threshold = {"CartPole-v0": 170} # lower the goal args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold) train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)]) test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) actor = Actor(net, args.action_shape, softmax_output=False, device=args.device).to(args.device) actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) net_c1 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) critic1 = Critic(net_c1, last_size=args.action_shape, device=args.device).to(args.device) critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) net_c2 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device) critic2 = Critic(net_c2, last_size=args.action_shape, device=args.device).to(args.device) critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) # better not to use auto alpha in CartPole if args.auto_alpha: target_entropy = 0.98 * np.log(np.prod(args.action_shape)) log_alpha = torch.zeros(1, requires_grad=True, device=args.device) alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) args.alpha = (target_entropy, log_alpha, alpha_optim) policy = DiscreteSACPolicy( actor=actor, actor_optim=actor_optim, critic=critic1, action_space=env.action_space, critic_optim=critic1_optim, critic2=critic2, critic2_optim=critic2_optim, tau=args.tau, gamma=args.gamma, alpha=args.alpha, estimation_step=args.n_step, ) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), ) test_collector = Collector(policy, test_envs) # train_collector.collect(n_step=args.buffer_size) # log log_path = os.path.join(args.logdir, args.task, "discrete_sac") writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): return mean_rewards >= args.reward_threshold # trainer result = OffpolicyTrainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.step_per_epoch, step_per_collect=args.step_per_collect, episode_per_test=args.test_num, batch_size=args.batch_size, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, update_per_step=args.update_per_step, test_in_train=False, ).run() assert stop_fn(result.best_reward) if __name__ == "__main__": pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) print(f"Final reward: {result.returns_stat.mean}, length: {result.lens_stat.mean}") if __name__ == "__main__": test_discrete_sac()