import argparse import os import pickle import pprint from typing import cast import gymnasium as gym import numpy as np import torch from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import BasePolicy, DiscreteCRRPolicy from tianshou.trainer import OfflineTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import ActorCritic, Net from tianshou.utils.net.discrete import Actor, Critic from tianshou.utils.space_info import SpaceInfo if __name__ == "__main__": from gather_cartpole_data import expert_file_name, gather_data else: # pytest from test.offline.gather_cartpole_data import expert_file_name, gather_data def get_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="CartPole-v0") parser.add_argument("--reward-threshold", type=float, default=None) parser.add_argument("--seed", type=int, default=1626) parser.add_argument("--lr", type=float, default=7e-4) parser.add_argument("--gamma", type=float, default=0.99) parser.add_argument("--n-step", type=int, default=3) parser.add_argument("--target-update-freq", type=int, default=320) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--update-per-epoch", type=int, default=1000) parser.add_argument("--batch-size", type=int, default=64) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64]) parser.add_argument("--test-num", type=int, default=100) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.0) parser.add_argument("--load-buffer-name", type=str, default=expert_file_name()) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) return parser.parse_known_args()[0] def test_discrete_crr(args: argparse.Namespace = get_args()) -> None: # envs env = gym.make(args.task) env.action_space = cast(gym.spaces.Discrete, env.action_space) space_info = SpaceInfo.from_env(env) args.state_shape = space_info.observation_info.obs_shape args.action_shape = space_info.action_info.action_shape if args.reward_threshold is None: default_reward_threshold = {"CartPole-v0": 180} args.reward_threshold = default_reward_threshold.get( args.task, env.spec.reward_threshold if env.spec else None, ) test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) test_envs.seed(args.seed) # model net = Net(args.state_shape, args.hidden_sizes[0], device=args.device) actor = Actor( net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device, softmax_output=False, ) action_dim = space_info.action_info.action_dim critic = Critic( net, hidden_sizes=args.hidden_sizes, last_size=action_dim, device=args.device, ) actor_critic = ActorCritic(actor, critic) optim = torch.optim.Adam(actor_critic.parameters(), lr=args.lr) policy: DiscreteCRRPolicy = DiscreteCRRPolicy( actor=actor, critic=critic, optim=optim, action_space=env.action_space, discount_factor=args.gamma, target_update_freq=args.target_update_freq, ).to(args.device) # buffer if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name): if args.load_buffer_name.endswith(".hdf5"): buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name) else: with open(args.load_buffer_name, "rb") as f: buffer = pickle.load(f) else: buffer = gather_data() # collector test_collector = Collector(policy, test_envs, exploration_noise=True) log_path = os.path.join(args.logdir, args.task, "discrete_crr") writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy: BasePolicy) -> None: torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards: float) -> bool: return mean_rewards >= args.reward_threshold result = OfflineTrainer( policy=policy, buffer=buffer, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.update_per_epoch, episode_per_test=args.test_num, batch_size=args.batch_size, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ).run() assert stop_fn(result.best_reward) if __name__ == "__main__": pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) collector_stats = collector.collect(n_episode=1, render=args.render) print(collector_stats) if __name__ == "__main__": test_discrete_crr(get_args())