import torch import copy import pickle import pytest import numpy as np from tianshou.data import Batch, to_torch def test_batch(): batch = Batch(obs=[0], np=np.zeros([3, 4])) assert batch.obs == batch["obs"] batch.obs = [1] assert batch.obs == [1] batch.cat_(batch) assert np.allclose(batch.obs, [1, 1]) assert batch.np.shape == (6, 4) assert np.allclose(batch[0].obs, batch[1].obs) batch.obs = np.arange(5) for i, b in enumerate(batch.split(1, shuffle=False)): if i != 5: assert b.obs == batch[i].obs else: with pytest.raises(AttributeError): batch[i].obs with pytest.raises(AttributeError): b.obs print(batch) batch_dict = {'b': np.array([1.0]), 'c': 2.0, 'd': torch.Tensor([3.0])} batch_item = Batch({'a': [batch_dict]})[0] assert isinstance(batch_item.a.b, np.ndarray) assert batch_item.a.b == batch_dict['b'] assert isinstance(batch_item.a.c, float) assert batch_item.a.c == batch_dict['c'] assert isinstance(batch_item.a.d, torch.Tensor) assert batch_item.a.d == batch_dict['d'] batch2 = Batch(a=[{ 'b': np.float64(1.0), 'c': np.zeros(1), 'd': Batch(e=np.array(3.0))}]) assert len(batch2) == 1 assert Batch().shape == [] assert batch2.shape[0] == 1 with pytest.raises(IndexError): batch2[-2] with pytest.raises(IndexError): batch2[1] assert batch2[0].shape == [] with pytest.raises(IndexError): batch2[0][0] with pytest.raises(TypeError): len(batch2[0]) assert isinstance(batch2[0].a.c, np.ndarray) assert isinstance(batch2[0].a.b, np.float64) assert isinstance(batch2[0].a.d.e, np.float64) batch2_from_list = Batch(list(batch2)) batch2_from_comp = Batch([e for e in batch2]) assert batch2_from_list.a.b == batch2.a.b assert batch2_from_list.a.c == batch2.a.c assert batch2_from_list.a.d.e == batch2.a.d.e assert batch2_from_comp.a.b == batch2.a.b assert batch2_from_comp.a.c == batch2.a.c assert batch2_from_comp.a.d.e == batch2.a.d.e for batch_slice in [ batch2[slice(0, 1)], batch2[:1], batch2[0:]]: assert batch_slice.a.b == batch2.a.b assert batch_slice.a.c == batch2.a.c assert batch_slice.a.d.e == batch2.a.d.e batch2_sum = (batch2 + 1.0) * 2 assert batch2_sum.a.b == (batch2.a.b + 1.0) * 2 assert batch2_sum.a.c == (batch2.a.c + 1.0) * 2 assert batch2_sum.a.d.e == (batch2.a.d.e + 1.0) * 2 batch3 = Batch(a={ 'c': np.zeros(1), 'd': Batch(e=np.array([0.0]), f=np.array([3.0]))}) batch3.a.d[0] = {'e': 4.0} assert batch3.a.d.e[0] == 4.0 batch3.a.d[0] = Batch(f=5.0) assert batch3.a.d.f[0] == 5.0 with pytest.raises(KeyError): batch3.a.d[0] = Batch(f=5.0, g=0.0) def test_batch_over_batch(): batch = Batch(a=[3, 4, 5], b=[4, 5, 6]) batch2 = Batch({'c': [6, 7, 8], 'b': batch}) batch2.b.b[-1] = 0 print(batch2) for k, v in batch2.items(): assert np.all(batch2[k] == v) assert batch2[-1].b.b == 0 batch2.cat_(Batch(c=[6, 7, 8], b=batch)) assert np.allclose(batch2.c, [6, 7, 8, 6, 7, 8]) assert np.allclose(batch2.b.a, [3, 4, 5, 3, 4, 5]) assert np.allclose(batch2.b.b, [4, 5, 0, 4, 5, 0]) d = {'a': [3, 4, 5], 'b': [4, 5, 6]} batch3 = Batch(c=[6, 7, 8], b=d) batch3.cat_(Batch(c=[6, 7, 8], b=d)) assert np.allclose(batch3.c, [6, 7, 8, 6, 7, 8]) assert np.allclose(batch3.b.a, [3, 4, 5, 3, 4, 5]) assert np.allclose(batch3.b.b, [4, 5, 6, 4, 5, 6]) batch4 = Batch(({'a': {'b': np.array([1.0])}},)) assert batch4.a.b.ndim == 2 assert batch4.a.b[0, 0] == 1.0 # advanced slicing batch5 = Batch(a=[[1, 2]], b={'c': np.zeros([3, 2, 1])}) assert batch5.shape == [1, 2] with pytest.raises(IndexError): batch5[2] with pytest.raises(IndexError): batch5[:, 3] with pytest.raises(IndexError): batch5[:, :, -1] batch5[:, -1] += 1 assert np.allclose(batch5.a, [1, 3]) assert np.allclose(batch5.b.c.squeeze(), [[0, 1]] * 3) def test_batch_cat_and_stack_and_empty(): b1 = Batch(a=[{'b': np.float64(1.0), 'd': Batch(e=np.array(3.0))}]) b2 = Batch(a=[{'b': np.float64(4.0), 'd': {'e': np.array(6.0)}}]) b12_cat_out = Batch.cat((b1, b2)) b12_cat_in = copy.deepcopy(b1) b12_cat_in.cat_(b2) assert np.all(b12_cat_in.a.d.e == b12_cat_out.a.d.e) assert np.all(b12_cat_in.a.d.e == b12_cat_out.a.d.e) assert isinstance(b12_cat_in.a.d.e, np.ndarray) assert b12_cat_in.a.d.e.ndim == 1 b12_stack = Batch.stack((b1, b2)) assert isinstance(b12_stack.a.d.e, np.ndarray) assert b12_stack.a.d.e.ndim == 2 b3 = Batch(a=np.zeros((3, 4)), b=torch.ones((2, 5)), c=Batch(d=[[1], [2]])) b4 = Batch(a=np.ones((3, 4)), b=torch.ones((2, 5)), c=Batch(d=[[0], [3]])) b34_stack = Batch.stack((b3, b4), axis=1) assert np.all(b34_stack.a == np.stack((b3.a, b4.a), axis=1)) assert np.all(b34_stack.c.d == list(map(list, zip(b3.c.d, b4.c.d)))) b5_dict = np.array([{'a': False, 'b': {'c': 2.0, 'd': 1.0}}, {'a': True, 'b': {'c': 3.0}}]) b5 = Batch(b5_dict) assert b5.a[0] == np.array(False) and b5.a[1] == np.array(True) assert np.all(b5.b.c == np.stack([e['b']['c'] for e in b5_dict], axis=0)) assert b5.b.d[0] == b5_dict[0]['b']['d'] assert b5.b.d[1] == 0.0 b5[1] = Batch.empty(b5[0]) assert np.allclose(b5.a, [False, False]) assert np.allclose(b5.b.c, [2, 0]) assert np.allclose(b5.b.d, [1, 0]) data = Batch(a=[False, True], b={'c': [2., 'st'], 'd': [1, None], 'e': [2., float('nan')]}, c=np.array([1, 3, 4], dtype=np.int), t=torch.tensor([4, 5, 6, 7.])) data[-1] = Batch.empty(data[1]) assert np.allclose(data.c, [1, 3, 0]) assert np.allclose(data.a, [False, False]) assert list(data.b.c) == ['2.0', ''] assert list(data.b.d) == [1, None] assert np.allclose(data.b.e, [2, 0]) assert torch.allclose(data.t, torch.tensor([4, 5, 6, 0.])) b0 = Batch() b0.empty_() assert b0.shape == [] def test_batch_over_batch_to_torch(): batch = Batch( a=np.ones((1,), dtype=np.float64), b=Batch( c=np.ones((1,), dtype=np.float64), d=torch.ones((1,), dtype=torch.float64) ) ) batch.to_torch() assert isinstance(batch.a, torch.Tensor) assert isinstance(batch.b.c, torch.Tensor) assert isinstance(batch.b.d, torch.Tensor) assert batch.a.dtype == torch.float64 assert batch.b.c.dtype == torch.float64 assert batch.b.d.dtype == torch.float64 batch.to_torch(dtype=torch.float32) assert batch.a.dtype == torch.float32 assert batch.b.c.dtype == torch.float32 assert batch.b.d.dtype == torch.float32 def test_utils_to_torch(): batch = Batch( a=np.ones((1,), dtype=np.float64), b=Batch( c=np.ones((1,), dtype=np.float64), d=torch.ones((1,), dtype=torch.float64) ) ) a_torch_float = to_torch(batch.a, dtype=torch.float32) assert a_torch_float.dtype == torch.float32 a_torch_double = to_torch(batch.a, dtype=torch.float64) assert a_torch_double.dtype == torch.float64 batch_torch_float = to_torch(batch, dtype=torch.float32) assert batch_torch_float.a.dtype == torch.float32 assert batch_torch_float.b.c.dtype == torch.float32 assert batch_torch_float.b.d.dtype == torch.float32 def test_batch_pickle(): batch = Batch(obs=Batch(a=0.0, c=torch.Tensor([1.0, 2.0])), np=np.zeros([3, 4])) batch_pk = pickle.loads(pickle.dumps(batch)) assert batch.obs.a == batch_pk.obs.a assert torch.all(batch.obs.c == batch_pk.obs.c) assert np.all(batch.np == batch_pk.np) def test_batch_from_to_numpy_without_copy(): batch = Batch(a=np.ones((1,)), b=Batch(c=np.ones((1,)))) a_mem_addr_orig = batch.a.__array_interface__['data'][0] c_mem_addr_orig = batch.b.c.__array_interface__['data'][0] batch.to_torch() batch.to_numpy() a_mem_addr_new = batch.a.__array_interface__['data'][0] c_mem_addr_new = batch.b.c.__array_interface__['data'][0] assert a_mem_addr_new == a_mem_addr_orig assert c_mem_addr_new == c_mem_addr_orig def test_batch_numpy_compatibility(): batch = Batch(a=np.array([[1.0, 2.0], [3.0, 4.0]]), b=Batch(), c=np.array([5.0, 6.0])) batch_mean = np.mean(batch) assert isinstance(batch_mean, Batch) assert sorted(batch_mean.keys()) == ['a', 'b', 'c'] with pytest.raises(TypeError): len(batch_mean) assert np.all(batch_mean.a == np.mean(batch.a, axis=0)) assert batch_mean.c == np.mean(batch.c, axis=0) if __name__ == '__main__': test_batch() test_batch_over_batch() test_batch_over_batch_to_torch() test_utils_to_torch() test_batch_pickle() test_batch_from_to_numpy_without_copy() test_batch_numpy_compatibility() test_batch_cat_and_stack_and_empty()