import argparse import os import pprint import gymnasium as gym import numpy as np import torch from torch import nn from torch.distributions import Independent, Normal from torch.utils.tensorboard import SummaryWriter from tianshou.data import Collector, VectorReplayBuffer from tianshou.env import DummyVectorEnv from tianshou.policy import NPGPolicy from tianshou.trainer import OnpolicyTrainer from tianshou.utils import TensorboardLogger from tianshou.utils.net.common import Net from tianshou.utils.net.continuous import ActorProb, Critic def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--task", type=str, default="Pendulum-v1") parser.add_argument("--reward-threshold", type=float, default=None) parser.add_argument("--seed", type=int, default=1) parser.add_argument("--buffer-size", type=int, default=50000) parser.add_argument("--lr", type=float, default=1e-3) parser.add_argument("--gamma", type=float, default=0.95) parser.add_argument("--epoch", type=int, default=5) parser.add_argument("--step-per-epoch", type=int, default=50000) parser.add_argument("--step-per-collect", type=int, default=2048) parser.add_argument("--repeat-per-collect", type=int, default=2) # theoretically it should be 1 parser.add_argument("--batch-size", type=int, default=99999) parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[64, 64]) parser.add_argument("--training-num", type=int, default=16) parser.add_argument("--test-num", type=int, default=10) parser.add_argument("--logdir", type=str, default="log") parser.add_argument("--render", type=float, default=0.0) parser.add_argument( "--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", ) # npg special parser.add_argument("--gae-lambda", type=float, default=0.95) parser.add_argument("--rew-norm", type=int, default=1) parser.add_argument("--norm-adv", type=int, default=1) parser.add_argument("--optim-critic-iters", type=int, default=5) parser.add_argument("--actor-step-size", type=float, default=0.5) return parser.parse_known_args()[0] def test_npg(args=get_args()): env = gym.make(args.task) args.state_shape = env.observation_space.shape or env.observation_space.n args.action_shape = env.action_space.shape or env.action_space.n args.max_action = env.action_space.high[0] if args.reward_threshold is None: default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250} args.reward_threshold = default_reward_threshold.get(args.task, env.spec.reward_threshold) # you can also use tianshou.env.SubprocVectorEnv # train_envs = gym.make(args.task) train_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.training_num)]) # test_envs = gym.make(args.task) test_envs = DummyVectorEnv([lambda: gym.make(args.task) for _ in range(args.test_num)]) # seed np.random.seed(args.seed) torch.manual_seed(args.seed) train_envs.seed(args.seed) test_envs.seed(args.seed) # model net = Net( args.state_shape, hidden_sizes=args.hidden_sizes, activation=nn.Tanh, device=args.device, ) actor = ActorProb(net, args.action_shape, unbounded=True, device=args.device).to(args.device) critic = Critic( Net( args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device, activation=nn.Tanh, ), device=args.device, ).to(args.device) # orthogonal initialization for m in list(actor.modules()) + list(critic.modules()): if isinstance(m, torch.nn.Linear): torch.nn.init.orthogonal_(m.weight) torch.nn.init.zeros_(m.bias) optim = torch.optim.Adam(critic.parameters(), lr=args.lr) # replace DiagGuassian with Independent(Normal) which is equivalent # pass *logits to be consistent with policy.forward def dist(*logits): return Independent(Normal(*logits), 1) policy = NPGPolicy( actor=actor, critic=critic, optim=optim, dist_fn=dist, discount_factor=args.gamma, reward_normalization=args.rew_norm, advantage_normalization=args.norm_adv, gae_lambda=args.gae_lambda, action_space=env.action_space, optim_critic_iters=args.optim_critic_iters, actor_step_size=args.actor_step_size, deterministic_eval=True, ) # collector train_collector = Collector( policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs)), ) test_collector = Collector(policy, test_envs) # log log_path = os.path.join(args.logdir, args.task, "npg") writer = SummaryWriter(log_path) logger = TensorboardLogger(writer) def save_best_fn(policy): torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth")) def stop_fn(mean_rewards): return mean_rewards >= args.reward_threshold # trainer result = OnpolicyTrainer( policy=policy, train_collector=train_collector, test_collector=test_collector, max_epoch=args.epoch, step_per_epoch=args.step_per_epoch, repeat_per_collect=args.repeat_per_collect, episode_per_test=args.test_num, batch_size=args.batch_size, step_per_collect=args.step_per_collect, stop_fn=stop_fn, save_best_fn=save_best_fn, logger=logger, ).run() assert stop_fn(result["best_reward"]) if __name__ == "__main__": pprint.pprint(result) # Let's watch its performance! env = gym.make(args.task) policy.eval() collector = Collector(policy, env) result = collector.collect(n_episode=1, render=args.render) rews, lens = result["rews"], result["lens"] print(f"Final reward: {rews.mean()}, length: {lens.mean()}") if __name__ == "__main__": test_npg()