import torch import numpy as np from torch import nn import torch.nn.functional as F class Net(nn.Module): def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'): super().__init__() self.device = device self.model = [ nn.Linear(np.prod(state_shape), 128), nn.ReLU(inplace=True)] for i in range(layer_num): self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)] if action_shape: self.model += [nn.Linear(128, np.prod(action_shape))] self.model = nn.Sequential(*self.model) def forward(self, s, state=None, info={}): if not isinstance(s, torch.Tensor): s = torch.tensor(s, device=self.device, dtype=torch.float) batch = s.shape[0] s = s.view(batch, -1) logits = self.model(s) return logits, state class Actor(nn.Module): def __init__(self, preprocess_net, action_shape): super().__init__() self.preprocess = preprocess_net self.last = nn.Linear(128, np.prod(action_shape)) def forward(self, s, state=None, info={}): logits, h = self.preprocess(s, state) logits = F.softmax(self.last(logits), dim=-1) return logits, h class Critic(nn.Module): def __init__(self, preprocess_net): super().__init__() self.preprocess = preprocess_net self.last = nn.Linear(128, 1) def forward(self, s): logits, h = self.preprocess(s, None) logits = self.last(logits) return logits class DQN(nn.Module): def __init__(self, h, w, action_shape, device='cpu'): super(DQN, self).__init__() self.device = device self.conv1 = nn.Conv2d(4, 16, kernel_size=5, stride=2) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, kernel_size=5, stride=2) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 32, kernel_size=5, stride=2) self.bn3 = nn.BatchNorm2d(32) def conv2d_size_out(size, kernel_size=5, stride=2): return (size - (kernel_size - 1) - 1) // stride + 1 convw = conv2d_size_out(conv2d_size_out(conv2d_size_out(w))) convh = conv2d_size_out(conv2d_size_out(conv2d_size_out(h))) linear_input_size = convw * convh * 32 self.fc = nn.Linear(linear_input_size, 512) self.head = nn.Linear(512, action_shape) def forward(self, x, state=None, info={}): if not isinstance(x, torch.Tensor): x = torch.tensor(x, device=self.device, dtype=torch.float) x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.relu(self.bn3(self.conv3(x))) x = self.fc(x.reshape(x.size(0), -1)) return self.head(x), state